1、行政职业能力测试分类模拟题 232 及答案解析(总分:100.00,做题时间:90 分钟)一、数量关系(总题数:0,分数:0.00)二、数字推理(总题数:10,分数:25.00)1.0,4,18,48,100,_(分数:2.50)A.160B.180C.200D.2202.-21,-18,-9,18,_(分数:2.50)A.27B.36C.64D.993.2,6,15,28,_,78(分数:2.50)A.45B.48C.55D.564.1,8,22,50,99,_(分数:2.50)A.176B.142C.134D.1205.11,12,12,18,13,28,_,42,15,_(分数:2.50
2、)A.15,55B.14,60C.14,55D.15,606.5,10,_,34,65,130(分数:2.50)A.15B.16C.17D.187.0, _ A B C (分数:2.50)A.B.C.D.8.1,4,16,49,121,_(分数:2.50)A.256B.225C.196D.1699.7,19,33,71,137,_(分数:2.50)A.279B.258C.259D.26810.0,6,24,60,120,_(分数:2.50)A.180B.210C.220D.240三、数学运算(总题数:30,分数:75.00)11.计算 (分数:2.50)A.100B.90C.10D.912.有
3、四个数,其中每三个数的和分别是 45、46、49、52,那么这四个数中最小的一个数是多少?(分数:2.50)A.22B.12C.15D.1613.在招考公务员中,A、B 两岗位共有 32 个男生、18 个女生报考。已知报考 A 岗位的男生数与女生数的比为 5:3。报考 B 岗位的男生数与女生数的比为 2:1,报考 A 岗位的女生数是_。(分数:2.50)A.15B.16C.12D.1014.15 克盐放入 135 克水中,放置一段时间后,盐水重量变为 100 克,这时盐水的浓度是多少?浓度比原来提高了百分之几?(分数:2.50)A.75%,12.5%B.25%,12.5%C.15%,50%D.
4、50%,62.5%15.甲、乙、丙三人,甲 21 岁时,乙 15 岁;甲 18 岁时,丙的年龄是乙的 3 倍。当甲 25 岁时,丙的年龄是_岁。(分数:2.50)A.45B.43C.41D.3916.有形状、大小、材料完全相同的黑筷、白筷、红筷各 4 双,混杂在一起,要求闭着眼睛,保证从中摸出不同颜色的 2 双筷子,则至少要摸出多少根?(分数:2.50)A.4B.5C.7D.1117.某市一体育场有三条同心圆跑道,里圈跑道长 公里,中圈跑道长 公里,外圈跑道长 (分数:2.50)A.8B.7C.6D.518.编号为 1、2、3、4 的四把椅子,摆成一个圆圈。现有甲、乙、丙、丁四人去坐,规定甲、
5、乙两人必须坐在相邻座位上,一共有多少种坐法?(分数:2.50)A.4B.8C.16D.2419.某高校法学系今年共招生 4 个班。已知不算一班,其余三个班总人数为 91 人,不算四班其余三个班总人数为 87 人,二、三班的总人数比一、四班的总人数少 1 人,问法学系今年共招新生多少人?(分数:2.50)A.120B.119C.118D.11720.甲、乙、丙三个工程队的效率比为 6:5:4,现将 A、B 两项工作量相同的工程交给这三个工程队,甲队负责 A 工程,乙队负责 B 工程,丙队参与 A 工程若干天后转而参与 B 工程。两项工程同时开工,耗时 16天同时结束。问丙队在 A 工程中参与施工
6、多少天?(分数:2.50)A.6B.7C.8D.921.两人合养一群羊,共 N 只。到一定时间后,全部卖出,平均每只羊恰好卖了 N 元。两人商定平分这些钱。由甲先拿 10 元钱,再由乙拿 10 元钱,甲再拿 10 元,乙再拿 10 元,最后,甲拿过之后,剩余不足 10 元,由乙拿去。那么,甲应该给乙多少元?(分数:2.50)A.8B.2C.4D.622.某产品年初时滞销,公司为收回部分成本故在去年底销售价格的基础上打五折亏本出售,卖出 2000 件后,该产品销售市场突然回温,于是公司立即在去年底销售价格的基础上提价 20%出售,卖出 3000 件后发现正好弥补了前期的亏损额。问该产品目前的成本
7、利润约为多少?(除进价外其他成本忽略不计,成本利率=利润/成本100%)(分数:2.50)A.23.15%B.30.43%C.40.17%D.47.78%23.某班 46 名学生去划船,一共乘坐 10 只船,大船坐 6 人,小船坐 4 人,全部坐满,则大船有多少只?(分数:2.50)A.3B.4C.6D.724.一项工程,a、b 合作 10 天完成,现在 a 做 5 天,b 做 3 天后,还剩这项工程的 (分数:2.50)A.15B.20C.25D.3025.为节约用水,某市决定用水收费实行超额超收,标准用水量以内每吨 2.5 元,超过标准的部分加倍收费。某用户某月用水 15 吨,交水费 62
8、.5 元,若该用户下个月用水 12 吨,则应交水费多少钱?(分数:2.50)A.42.5 元B.47.5 元C.50 元D.55 元26. 的值为_。 A1 B C D (分数:2.50)A.B.C.D.27.姐弟二人比岁数,姐姐对弟弟说:“当我是你今年的岁数时,你刚刚 5 岁。”弟弟对姐姐说:“当我长到你今年的岁数时,你就是 17 岁了。”根据姐弟的这段话,姐姐今年多少岁?(分数:2.50)A.13B.12C.10D.928.某品牌的电冰箱,甲商场比乙商场的进价多 10%,如果甲商场按 30%的利润定价;乙商场按 40%的利润定价,则甲商场的定价比乙商场多 45 元,那么,乙商场的进价是多少
9、元?(分数:2.50)A.2100B.1800C.1500D.260029.在下图中,大正方形的边长为 10,连接大正方形的各边中点得到小正方形,将小正方形每边三等分,再将三等分点与正方形的中心和对应的顶点相连,得到如下图形。那么阴影部分面积是_。 A25 D (分数:2.50)A.B.C.D.30.甲、乙和丙三种不同浓度、不同规格的酒精溶液,单瓶重量分别为 3 公斤、7 公斤和 9 公斤,如果将甲乙各一瓶、甲丙各一瓶和乙丙各一瓶分别混合,得到的酒精浓度分别为 50%、50%和 60%。如果将三种酒精各一瓶混合,得到的酒精中要加入多少公斤纯净水后,其浓度正好是 50%?(分数:2.50)A.1
10、B.1.3C.1.6D.1.931.一列队伍长 15 米,它以每分钟 85 米的速度通过一座长 100 米的桥,问队伍从队首上桥到队尾离开桥大约需要多少分钟?(分数:2.50)A.1.0B.1.2C.1.3D.1.532.有红、黄、蓝、白四种颜色的小球若干个,每个人可以从中任意选择两个,问至少需要多少个人才能保证至少有 4 人选的小球的颜色相同?(分数:2.50)A.4B.27C.31D.4933.甲、乙两个车间共有 94 个工人,每天共加工 1998 把竹椅。由于设备和技术的不同,甲车间平均每个工人每天只能生产 15 把竹椅,而乙车间平均每个工人每天可以生产 43 把竹椅。甲车间每天竹椅产量
11、比乙车间多几把?(分数:2.50)A.1095B.903C.73D.19234.某一天秘书发现办公桌上的台历在一个月中已经有 9 天没有翻了,就一次翻了 9 张,这 9 天的日期加起来,得数恰好是 108,问这一天是几号?(分数:2.50)A.14B.13C.17D.1935.袋子里有若干个球,小明每次拿出其中的一半再放回一个球,这样一共做了五次,袋中还有 3 个球,问原来袋中有多少个球?(分数:2.50)A.18B.34C.66D.15836.盒中装有 10 分、20 分、25 分面值的邮票,其中 20 分邮票的张数是 10 分邮票张数的 3 倍还多 1,25分邮票的张数是 20 分邮票张数
12、的 5 倍还多 3。问盒子中全部邮票总面值最少是多少分?(分数:2.50)A.665B.670C.680D.69037.某单位组织征文、演讲和书法评比,三项全优者为一等奖,两项优秀的为二等奖,一项优秀的为三等奖。已知 50 人获奖,其中一等奖为 10 人,征文优秀者 36 人,演讲优秀者 30 人,书法优秀者 26 人,征文和演讲均优秀者 20 人,征文和书法均优秀者 16 人,则获二等奖的人数是_。(分数:2.50)A.22 人B.24 人C.26 人D.36 人38.甲、乙两个钻井队第一季度共钻井 200 米,第二季度甲钻井队钻井深度增加 100%,乙钻井队钻井深度增加 6%。第二季度两个
13、钻井队共钻井 215 米,则第一季度甲、乙钻井队分别钻井多少米?(分数:2.50)A.60,140B.75,125C.85,115D.95,10539.某店面欲以 106 万元的价格转让,现有甲乙丙三人想承接。已知甲乙两人的现有资金加上丙现有资金的三分之一正好达到转让价。后来由于某种原因,甲乙两人的现有资金分别减少了 10 万元、20 万元,丙的现有资金减少了六分之一,此时三人的资金和正好达到转让价。问甲乙现有资金和为多少万元?(分数:2.50)A.56B.66C.75D.8640.给甲、乙、丙三人分配 A、B、C 工作,他们完成工作时间表如下表,问完成这三项工作最少需要多少时间? (分数:2
14、.50)A.25B.27C.28D.29行政职业能力测试分类模拟题 232 答案解析(总分:100.00,做题时间:90 分钟)一、数量关系(总题数:0,分数:0.00)二、数字推理(总题数:10,分数:25.00)1.0,4,18,48,100,_(分数:2.50)A.160B.180 C.200D.220解析:解析 整数乘积拆分数列。0=01 2 ;4=12 2 ;18=23 2 ;48=34 2 ;100=45 2 ;(180)=56 2 。2.-21,-18,-9,18,_(分数:2.50)A.27B.36C.64D.99 解析:解析 二级等差数列变式。 3.2,6,15,28,_,7
15、8(分数:2.50)A.45B.48C.55 D.56解析:解析 乘积拆分数列。各项分别为 12,23,35,47,511=(55),613,乘号前面的乘数为等差数列,后面乘数为质数列。4.1,8,22,50,99,_(分数:2.50)A.176 B.142C.134D.120解析:解析 三级等差数列。 5.11,12,12,18,13,28,_,42,15,_(分数:2.50)A.15,55B.14,60 C.14,55D.15,60解析:解析 间隔组合数列。 奇数项:11、12、13、(14)、15,为连续自然数 6.5,10,_,34,65,130(分数:2.50)A.15B.16C.1
16、7 D.18解析:解析 等差数列变式。 7.0, _ A B C (分数:2.50)A. B.C.D.解析:解析 各项依次可改写为8.1,4,16,49,121,_(分数:2.50)A.256 B.225C.196D.169解析:解析 数列为 1 2 、2 2 、4 2 、7 2 、11 2 ,各项的底数相邻两项作差得数列 1、2、3、4、(5),所以所求数应为(11+5) 2 =(256),故选择 A。9.7,19,33,71,137,_(分数:2.50)A.279 B.258C.259D.268解析:解析 前一项的 2 倍依次加减 5 得到后一项。依此规律,72+5=19,192-5=33
17、,332+5=71,712-5=137,答案为 1372+5=(279)。10.0,6,24,60,120,_(分数:2.50)A.180B.210 C.220D.240解析:解析 三级等差数列。 另解,多次方数列变式。 三、数学运算(总题数:30,分数:75.00)11.计算 (分数:2.50)A.100B.90 C.10D.9解析:解析 12.有四个数,其中每三个数的和分别是 45、46、49、52,那么这四个数中最小的一个数是多少?(分数:2.50)A.22B.12 C.15D.16解析:解析 把这 4 个和数全加起来相当于每个数都加了 3 遍,所以,这四个数的和等于(45+46+49+
18、52)3=64。用总数减去三数之和的最大值,得到这四个数中的最小数,即 64-52=12。13.在招考公务员中,A、B 两岗位共有 32 个男生、18 个女生报考。已知报考 A 岗位的男生数与女生数的比为 5:3。报考 B 岗位的男生数与女生数的比为 2:1,报考 A 岗位的女生数是_。(分数:2.50)A.15B.16C.12 D.10解析:解析 设报考 A 岗位的女生有 3a 个,报考 B 岗位的女生有 b 个,则报考 A 岗位的男生数为 5a,报考 B 岗位的男生数为 2b。可列方程组14.15 克盐放入 135 克水中,放置一段时间后,盐水重量变为 100 克,这时盐水的浓度是多少?浓
19、度比原来提高了百分之几?(分数:2.50)A.75%,12.5%B.25%,12.5%C.15%,50% D.50%,62.5%解析:解析 原来的浓度是 15(135+15)100%=10%。水蒸发以后,盐的重量没变,这时盐水的浓度是15100100%=15%,浓度比原来提高了(15%-10%)10%=50%。15.甲、乙、丙三人,甲 21 岁时,乙 15 岁;甲 18 岁时,丙的年龄是乙的 3 倍。当甲 25 岁时,丙的年龄是_岁。(分数:2.50)A.45B.43 C.41D.39解析:解析 由题意可求甲、乙的年龄差为 21-15=6 岁,甲 18 岁时,乙 18-6=12 岁,丙为 12
20、3=36 岁。甲 25 岁时,丙为 36+(25-18)=43 岁。16.有形状、大小、材料完全相同的黑筷、白筷、红筷各 4 双,混杂在一起,要求闭着眼睛,保证从中摸出不同颜色的 2 双筷子,则至少要摸出多少根?(分数:2.50)A.4B.5C.7D.11 解析:解析 考虑最差的情形,首先摸出其中某一种颜色的所有筷子,有 24=8 根,然后在剩余的两种颜色的筷子中各摸出 1 根,那么至少再随便的摸一根筷子就可以了。因此,至少需要摸 8+2+1=11 根筷子。17.某市一体育场有三条同心圆跑道,里圈跑道长 公里,中圈跑道长 公里,外圈跑道长 (分数:2.50)A.8B.7C.6 D.5解析:解析
21、 甲每小时跑 圈,乙每小时跑 圈,丙每小时跑18.编号为 1、2、3、4 的四把椅子,摆成一个圆圈。现有甲、乙、丙、丁四人去坐,规定甲、乙两人必须坐在相邻座位上,一共有多少种坐法?(分数:2.50)A.4B.8C.16 D.24解析:解析 甲、乙两个人绑到一起,先安排甲和乙,有 4 种排法,然后安排丙和丁,有 21=2 种排法,最后甲和乙之间又有 2 种排法,因此,一共有 422=16 种坐法。19.某高校法学系今年共招生 4 个班。已知不算一班,其余三个班总人数为 91 人,不算四班其余三个班总人数为 87 人,二、三班的总人数比一、四班的总人数少 1 人,问法学系今年共招新生多少人?(分数
22、:2.50)A.120B.119 C.118D.117解析:解析 设一至四班的人数分别为 a、b、c、d 人,则20.甲、乙、丙三个工程队的效率比为 6:5:4,现将 A、B 两项工作量相同的工程交给这三个工程队,甲队负责 A 工程,乙队负责 B 工程,丙队参与 A 工程若干天后转而参与 B 工程。两项工程同时开工,耗时 16天同时结束。问丙队在 A 工程中参与施工多少天?(分数:2.50)A.6 B.7C.8D.9解析:解析 设甲、乙、丙每日工作量分别为 6、5、4,丙队参与 A 工程 x 天。根据 A、B 工作量相同列方程,616+4x=516+4(16-x),解得 x=6。21.两人合养
23、一群羊,共 N 只。到一定时间后,全部卖出,平均每只羊恰好卖了 N 元。两人商定平分这些钱。由甲先拿 10 元钱,再由乙拿 10 元钱,甲再拿 10 元,乙再拿 10 元,最后,甲拿过之后,剩余不足 10 元,由乙拿去。那么,甲应该给乙多少元?(分数:2.50)A.8B.2 C.4D.6解析:解析 直接运用特殊值代入验证法。由题意可知,这笔钱的总额为 N 2 元,且 N 2 10。所以当N=4 时,可满足题意,一共卖 44=16 元,甲拿 10 元后,剩下的 6 元由乙拿,则乙拿 6 元后,甲还要给乙 2 元,才能平分,所以选 B。22.某产品年初时滞销,公司为收回部分成本故在去年底销售价格的
24、基础上打五折亏本出售,卖出 2000 件后,该产品销售市场突然回温,于是公司立即在去年底销售价格的基础上提价 20%出售,卖出 3000 件后发现正好弥补了前期的亏损额。问该产品目前的成本利润约为多少?(除进价外其他成本忽略不计,成本利率=利润/成本100%)(分数:2.50)A.23.15%B.30.43% C.40.17%D.47.78%解析:解析 根据题意,设去年年底销售价格为 x 元,商品成本为 y 元,则根据题意可列方程 2000(y-0.5x)=3000(1.2x-y),解得 。目前该产品的成本利润率为23.某班 46 名学生去划船,一共乘坐 10 只船,大船坐 6 人,小船坐 4
25、 人,全部坐满,则大船有多少只?(分数:2.50)A.3 B.4C.6D.7解析:解析 鸡兔同笼问题,假设全部坐小船,则 10 只船坐满可坐 40 人,而实际是 46 人,相差 6 人,大船和小船每只相差 2 人,因此大船有 62=3 只。24.一项工程,a、b 合作 10 天完成,现在 a 做 5 天,b 做 3 天后,还剩这项工程的 (分数:2.50)A.15B.20C.25D.30 解析:解析 设这项工程的总工程量为 30,则 a、b 合作效率为 3010=3,a 做了 5 天、b 做了 3 天相当于 a、b 合作 3 天后 a 又做了 2 天,a、b 合作 3 天一共做了 33=9,而
26、剩下这项工程的25.为节约用水,某市决定用水收费实行超额超收,标准用水量以内每吨 2.5 元,超过标准的部分加倍收费。某用户某月用水 15 吨,交水费 62.5 元,若该用户下个月用水 12 吨,则应交水费多少钱?(分数:2.50)A.42.5 元B.47.5 元 C.50 元D.55 元解析:解析 鸡兔同笼问题。超出标准的水费每吨应为 2.52=5 元;若全部为标准内水费则收取2.515=37.5 元,多出 62.5-37.5=25 元,故超出标准的水量为 25(5-2.5)=10 吨,标准用水量为 5 吨。该用户下月用水 12 吨,需交水费 52.5+(12-5)5=47.5 元。26.
27、的值为_。 A1 B C D (分数:2.50)A.B.C.D. 解析:解析 27.姐弟二人比岁数,姐姐对弟弟说:“当我是你今年的岁数时,你刚刚 5 岁。”弟弟对姐姐说:“当我长到你今年的岁数时,你就是 17 岁了。”根据姐弟的这段话,姐姐今年多少岁?(分数:2.50)A.13 B.12C.10D.9解析:解析 设姐弟俩年龄分别为 x、y,那么有 姐姐 弟弟 x y y 5 17 x 姐弟俩在每一年的年龄差始终不变,即有 x-y=y-5=17-x,解方程得 x=13。28.某品牌的电冰箱,甲商场比乙商场的进价多 10%,如果甲商场按 30%的利润定价;乙商场按 40%的利润定价,则甲商场的定价
28、比乙商场多 45 元,那么,乙商场的进价是多少元?(分数:2.50)A.2100B.1800C.1500 D.2600解析:解析 设乙商场进价为 x 元,则甲商场进价为(1+10%)x=1.1x,那么(1+30%)1.1x=(1+40%)x+45,解得 x=1500。29.在下图中,大正方形的边长为 10,连接大正方形的各边中点得到小正方形,将小正方形每边三等分,再将三等分点与正方形的中心和对应的顶点相连,得到如下图形。那么阴影部分面积是_。 A25 D (分数:2.50)A.B.C. D.解析:解析 将小正方形内部的阴影部分沿着对应的小正方形边向外翻折,可以将原图转化为如下图所示的样子,因此
29、阴影部分面积为 10102=50。 30.甲、乙和丙三种不同浓度、不同规格的酒精溶液,单瓶重量分别为 3 公斤、7 公斤和 9 公斤,如果将甲乙各一瓶、甲丙各一瓶和乙丙各一瓶分别混合,得到的酒精浓度分别为 50%、50%和 60%。如果将三种酒精各一瓶混合,得到的酒精中要加入多少公斤纯净水后,其浓度正好是 50%?(分数:2.50)A.1B.1.3C.1.6 D.1.9解析:解析 设每瓶甲、乙、丙溶液中含有酒精的量分别为 x,y,z,根据两两混合之后的浓度,可知x+y=(3+7)50%)=5,x+z=(3+9)50%=6,y+z=(7+9)60%=9.6。以上三式相加除以 2,可得x+y+z=
30、10.3。如果要求甲、乙、丙各一瓶混合之后浓度为 50%,需要加纯净水 10.350%-(3+7+9)=1.6 公斤。31.一列队伍长 15 米,它以每分钟 85 米的速度通过一座长 100 米的桥,问队伍从队首上桥到队尾离开桥大约需要多少分钟?(分数:2.50)A.1.0B.1.2C.1.3 D.1.5解析:解析 队伍需要通过的距离为 100+15=115 米,则需要的时间为 115851.35 分钟,选择最为接近的 C。32.有红、黄、蓝、白四种颜色的小球若干个,每个人可以从中任意选择两个,问至少需要多少个人才能保证至少有 4 人选的小球的颜色相同?(分数:2.50)A.4B.27C.31
31、 D.49解析:解析 每个人可以从中选择两个小球,颜色相同,有 4 种选择;颜色不同,有33.甲、乙两个车间共有 94 个工人,每天共加工 1998 把竹椅。由于设备和技术的不同,甲车间平均每个工人每天只能生产 15 把竹椅,而乙车间平均每个工人每天可以生产 43 把竹椅。甲车间每天竹椅产量比乙车间多几把?(分数:2.50)A.1095B.903C.73D.192 解析:解析 设甲车间有 x 人,乙车间 94-x 人。根据题意列方程有 15x+(94-x)43=1998,得到 x=73,则甲车间每天生产 1573=1095 把,乙车间每天生产 1998-1095=903 把,比甲车间少 109
32、5-903=192 把。34.某一天秘书发现办公桌上的台历在一个月中已经有 9 天没有翻了,就一次翻了 9 张,这 9 天的日期加起来,得数恰好是 108,问这一天是几号?(分数:2.50)A.14B.13C.17 D.19解析:解析 这是一个数列问题。9 天的日期是一个项数为 9、公差为 1 的等差数列,各项的和为 108。根据等差数列求和公式可知,首项与末项的和为 10829=24:义根据等差数列通项公式可知,末项为(24+9-1)2=16。故这一天是 17 号。35.袋子里有若干个球,小明每次拿出其中的一半再放回一个球,这样一共做了五次,袋中还有 3 个球,问原来袋中有多少个球?(分数:
33、2.50)A.18B.34 C.66D.158解析:解析 应用逆推法。第五次操作之后袋子里有 3 个球,则第四次操作之后袋子里有(3-1)2=4 个,第三次操作之后有(4-1)2=6 个,第二次操作之后有(6-1)2=10 个,第一次操作之后有(10-1)2=18个,原来袋子里有(18-1)2=34 个球。36.盒中装有 10 分、20 分、25 分面值的邮票,其中 20 分邮票的张数是 10 分邮票张数的 3 倍还多 1,25分邮票的张数是 20 分邮票张数的 5 倍还多 3。问盒子中全部邮票总面值最少是多少分?(分数:2.50)A.665 B.670C.680D.690解析:解析 为使邮票
34、总面值最少,应当取 10 分邮票数量最少。10 分邮票最少是 1 张。20 分邮票应31+1=4 张,面值 420=80 分。25 分邮票应 54+3=23 张,面值 2325=575 分。所以总面值最少为10+80+575=665 分。37.某单位组织征文、演讲和书法评比,三项全优者为一等奖,两项优秀的为二等奖,一项优秀的为三等奖。已知 50 人获奖,其中一等奖为 10 人,征文优秀者 36 人,演讲优秀者 30 人,书法优秀者 26 人,征文和演讲均优秀者 20 人,征文和书法均优秀者 16 人,则获二等奖的人数是_。(分数:2.50)A.22 人 B.24 人C.26 人D.36 人解析
35、:解析 设演讲和书法均优秀的人数为 x,则由容斥原理的公式有 36+30+26-20-16-x+10=50,解得x=16,所求为 20+16+16-103=22 人。38.甲、乙两个钻井队第一季度共钻井 200 米,第二季度甲钻井队钻井深度增加 100%,乙钻井队钻井深度增加 6%。第二季度两个钻井队共钻井 215 米,则第一季度甲、乙钻井队分别钻井多少米?(分数:2.50)A.60,140B.75,125 C.85,115D.95,105解析:解析 利用十字交叉法: 第一季度甲队钻井 39.某店面欲以 106 万元的价格转让,现有甲乙丙三人想承接。已知甲乙两人的现有资金加上丙现有资金的三分之一正好达到转让价。后来由于某种原因,甲乙两人的现有资金分别减少了 10 万元、20 万元,丙的现有资金减少了六分之一,此时三人的资金和正好达到转让价。问甲乙现有资金和为多少万元?(分数:2.50)A.56B.66C.75D.86 解析:解析 由题意可知40.给甲、乙、丙三人分配 A、B、C 工作,他们完成工作时间表如下表,问完成这三项工作最少需要多少时间? (分数:2.50)A.25 B.27C.28D.29解析:解析 根据题干可知,甲做 B 工作,乙做 A 工作,丙做 C 工作的时候,三项工作做完时间最少,即 9+7+9=25 天。