欢迎来到麦多课文档分享! | 帮助中心 海量文档,免费浏览,给你所需,享你所想!
麦多课文档分享
全部分类
  • 标准规范>
  • 教学课件>
  • 考试资料>
  • 办公文档>
  • 学术论文>
  • 行业资料>
  • 易语言源码>
  • ImageVerifierCode 换一换
    首页 麦多课文档分享 > 资源分类 > PDF文档下载
    分享到微信 分享到微博 分享到QQ空间

    ISO TS 20281-2006 Water quality - Guidance on statistical interpretation of ecotoxicity data《水质 生态毒性数据的统计说明指南》.pdf

    • 资源ID:1258120       资源大小:3.99MB        全文页数:268页
    • 资源格式: PDF        下载积分:10000积分
    快捷下载 游客一键下载
    账号登录下载
    微信登录下载
    二维码
    微信扫一扫登录
    下载资源需要10000积分(如需开发票,请勿充值!)
    邮箱/手机:
    温馨提示:
    如需开发票,请勿充值!快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如需开发票,请勿充值!如填写123,账号就是123,密码也是123。
    支付方式: 支付宝扫码支付    微信扫码支付   
    验证码:   换一换

    加入VIP,交流精品资源
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    ISO TS 20281-2006 Water quality - Guidance on statistical interpretation of ecotoxicity data《水质 生态毒性数据的统计说明指南》.pdf

    1、 Reference number ISO/TS 20281:2006(E) ISO 2006TECHNICAL SPECIFICATION ISO/TS 20281 First edition 2006-04-01 Water quality Guidance on statistical interpretation of ecotoxicity data Qualit de leau Lignes directrices relatives linterprtation statistique de donnes cotoxicologiques ISO/TS 20281:2006(E)

    2、 PDF disclaimer This PDF file may contain embedded typefaces. In accordance with Adobes licensing policy, this file may be printed or viewed but shall not be edited unless the typefaces which are embedded are licensed to and installed on the computer performing the editing. In downloading this file,

    3、 parties accept therein the responsibility of not infringing Adobes licensing policy. The ISO Central Secretariat accepts no liability in this area. Adobe is a trademark of Adobe Systems Incorporated. Details of the software products used to create this PDF file can be found in the General Info rela

    4、tive to the file; the PDF-creation parameters were optimized for printing. Every care has been taken to ensure that the file is suitable for use by ISO member bodies. In the unlikely event that a problem relating to it is found, please inform the Central Secretariat at the address given below. ISO 2

    5、006 All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from either ISO at the address below or ISOs member body in the co

    6、untry of the requester. ISO copyright office Case postale 56 CH-1211 Geneva 20 Tel. + 41 22 749 01 11 Fax + 41 22 749 09 47 E-mail copyrightiso.org Web www.iso.org Published in Switzerland ii ISO 2006 All rights reservedISO/TS 20281:2006(E) ISO 2006 All rights reserved iii Contents Page Forewordxii

    7、Introduction xiii 1 Scope 1 2 Normative references 1 3 Terms and definitions .1 4 General statistical principles8 4.1 Different statistical approaches .8 4.1.1 General8 4.1.2 Hypothesis-testing methods 8 4.1.3 Concentration-response modelling methods .10 4.1.4 Biology-based methods 11 4.2 Experiment

    8、al design issues .11 4.2.1 General11 4.2.2 NOEC or EC x : Implications for design.12 4.2.3 Randomization .12 4.2.4 Replication13 4.2.5 Multiple controls included in the experimental design13 4.3 Process of data analysis.14 4.3.1 General14 4.3.2 Data inspection and outliers.14 4.3.3 Data inspection a

    9、nd assumptions .15 4.3.3.1 Scatter .15 4.3.3.2 Heterogeneous variances and distribution .15 4.3.3.3 Heterogeneous variances and true variation in response.16 4.3.3.4 Consequences for the analysis 16 4.3.4 Transformation of data16 4.3.5 Parametric and non-parametric methods .17 4.3.5.1 General 17 4.3

    10、.5.2 Parametric methods.17 4.3.5.3 Generalized linear models (GLMs) .18 4.3.5.4 Non-parametric methods.18 4.3.5.5 How to choose?18 4.3.6 Pre-treatment of data.19 4.3.7 Model fitting19 4.3.8 Model checking20 4.3.8.1 Analysis of residuals .20 4.3.8.2 Validation of fitted dose-response model .21 4.3.9

    11、Reporting the results.21 5 Hypothesis testing.21 5.1 Introduction21 5.1.1 General21 5.1.2 NOEC: What it is, and what it is not.25 5.1.3 Hypothesis used to determine NOEC25 5.1.3.1 Understanding the question to be answered 25 5.1.3.2 One-sided hypothesis26 5.1.3.3 Two-sided trend test 26 5.1.3.4 Tren

    12、d or pair-wise test.26 5.1.4 Comparisons of single-step (pair-wise comparisons) or step-down trend tests to determine the NOEC28 ISO/TS 20281:2006(E) iv ISO 2006 All rights reserved5.1.4.1 General discussion . 28 5.1.4.2 Single-step procedures. 28 5.1.4.3 Step-down procedures 29 5.1.4.4 Deciding bet

    13、ween the two approaches . 30 5.1.5 Dose metric in trend tests 31 5.1.6 Role of power in toxicity experiments 31 5.1.7 Experimental design . 32 5.1.8 Treatment of covariates and other adjustments to analysis 33 5.2 Quantal data (e.g. mortality, survival). 34 5.2.1 Hypothesis testing with quantal data

    14、 to determine NOEC values . 34 5.2.2 Parametric versus non-parametric tests 35 5.2.2.1 Basis . 35 5.2.2.2 Single-step procedures. 36 5.2.2.3 Step-down procedures 36 5.2.2.3.1 Choice of step-down procedure. 36 5.2.2.3.2 Test for monotone dose response 36 5.2.2.3.3 Analysing the monotonic response for

    15、 quantal data Step-down procedure . 37 5.2.2.3.4 Possible modifications of the step-down procedure. 37 5.2.2.4 Alternative procedures . 37 5.2.2.4.1 Parametric and non-parametric procedures. 37 5.2.2.4.2 Pair-wise ANOVA-based methods . 38 5.2.2.4.3 Jonckheere-Terpstra trend test38 5.2.2.4.4 Poisson

    16、tests . 38 5.2.2.5 Assumptions of methods for determining NOEC values 38 5.2.3 Additional information 39 5.2.4 Statistical items to be included in the study report. 40 5.3 Hypothesis testing with continuous data (e.g. mass, length, growth rate) to determine NOEC 40 5.3.1 General . 40 5.3.2 Parametri

    17、c versus non-parametric tests 41 5.3.3 Single-step (pair-wise) procedures . 42 5.3.3.1 General . 42 5.3.3.2 Dunnetts test. 42 5.3.3.3 Tamhane-Dunnett test. 42 5.3.3.4 Dunns test . 42 5.3.3.5 Mann-Whitney test. 43 5.3.4 Step-down trend procedures . 43 5.3.5 Determining the NOEC using a step-down proc

    18、edure based on a trend test 43 5.3.5.1 General . 43 5.3.5.2 Preliminaries 43 5.3.5.3 Step-down procedure 43 5.3.5.3.1 Preferred approach . 43 5.3.5.3.2 Williams test 44 5.3.5.3.3 Jonckheere-Terpstra test 44 5.3.6 Assumptions for methods for determining NOEC values 44 5.3.6.1 Small samples Massive ti

    19、es. 44 5.3.6.2 Normality 45 5.3.6.3 Variance homogeneity 45 5.3.7 Operational considerations for statistical analyses 46 5.3.7.1 Treatment of experimental units 46 5.3.7.2 Identification and meaning of outliers 46 5.3.7.3 Multiple controls 46 5.3.7.4 General . 47 5.4 Statistical items to be included

    20、 in the study report. 47 6 Dose-response modelling 48 6.1 Introduction . 48 6.2 Modelling quantal dose-response data (for a single exposure duration) . 49 6.2.1 General . 49 6.2.2 Choice of model 50 ISO/TS 20281:2006(E) ISO 2006 All rights reserved v 6.2.2.1 General 50 6.2.2.2 Probit model .51 6.2.2

    21、.3 Logit model.53 6.2.2.4 Weibull model.54 6.2.2.5 Multi-stage models.55 6.2.2.6 Definitions of EC 50and EC x .55 6.2.3 Model fitting and estimation of parameters 56 6.2.3.1 Software and assumptions .56 6.2.3.2 Response in controls.56 6.2.3.3 Analysis of data with various observed fractions at each

    22、dose group57 6.2.3.4 Analysis of data with one observed fraction at each dose group 58 6.2.3.5 Extrapolation and EC x .58 6.2.3.6 Confidence intervals58 6.2.4 Assumptions 59 6.2.4.1 General 59 6.2.4.2 Statistical assumptions .59 6.2.4.3 Evaluation of assumptions .59 6.2.4.3.1 Evaluation of basic ass

    23、umptions .59 6.2.4.3.2 Evaluation of the additional assumption.59 6.2.4.4 Consequences of violating the assumptions60 6.2.4.4.1 Consequences of violating basic assumptions60 6.2.4.4.2 Consequences of violating the additional assumption .60 6.3 Dose-response modelling of continuous data (for a single

    24、 exposure duration) 60 6.3.1 Purpose.60 6.3.2 Terms and notation60 6.3.3 Choice of model.61 6.3.3.1 First distinctions 61 6.3.3.2 Linear models.62 6.3.3.3 Threshold models 62 6.3.3.4 Additive versus multiplicative models.63 6.3.3.5 Models based on “quantal” models.63 6.3.3.6 Nested non-linear models

    25、 .64 6.3.3.7 Hill model 67 6.3.3.8 Non-monotone models 67 6.3.4 Model fitting and estimation of parameters 68 6.3.4.1 Software and assumptions .68 6.3.4.2 Response in controls.68 6.3.4.3 Fitting the model assuming normal variation .68 6.3.4.4 Fitting the model assuming normal variation after log-tra

    26、nsformation .68 6.3.4.5 Fitting the model assuming normal variation after other transformations69 6.3.4.6 No individual data available69 6.3.4.7 Fitting the model using GLM.69 6.3.4.8 Covariates .70 6.3.4.9 Heterogeneity and weighted analysis71 6.3.4.10 Confidence intervals73 6.3.4.11 Extrapolation

    27、73 6.3.4.12 Analysis of data with replicated dose group.73 6.3.5 Assumptions 74 6.3.5.1 General 74 6.3.5.2 Statistical assumptions .74 6.3.5.3 Additional assumption 74 6.3.6 Evaluation of assumptions .75 6.3.7 Consequences of violating the assumptions .75 6.3.7.1 Basic assumptions 75 6.3.7.2 Additio

    28、nal assumption 76 6.4 To accept or not accept the fitted model? 77 6.4.1 Can the fitted model be accepted and used for its intended purpose?.77 6.4.2 Is the model in agreement with the data? .77 6.4.3 Do the data provide sufficient information for fixing the model? 77 ISO/TS 20281:2006(E) vi ISO 200

    29、6 All rights reserved6.5 Design issues 81 6.5.1 General . 81 6.5.2 Location of dose groups 81 6.5.3 Number of replicates 81 6.5.4 Balanced versus unbalanced designs82 6.6 Exposure duration and time. 82 6.6.1 General . 82 6.6.2 Quantal data. 82 6.6.3 Continuous data 83 6.6.3.1 General . 83 6.6.3.2 In

    30、dependent observations in time . 83 6.6.3.3 Dependent observations in time 85 6.7 Search algorithms and non-linear regression . 85 6.8 Reporting statistics. 86 6.8.1 Quantal data. 86 6.8.2 Continuous data 87 7 Biology-based methods . 87 7.1 Introduction . 87 7.1.1 Effects as functions of concentrati

    31、on and exposure time 87 7.1.2 Parameter estimation 89 7.1.3 Outlook. 89 7.2 Modules of effect-models. 90 7.2.1 General . 90 7.2.2 Toxico-kinetic model 91 7.2.3 Physiological targets of toxicants. 91 7.2.4 Change in target parameter . 92 7.2.5 Change in endpoint. 93 7.3 Survival 93 7.3.1 Relationship

    32、 between hazard rate and survival probability . 93 7.3.2 Assumptions of survival probability at any concentration of test compound . 94 7.3.3 Summary 94 7.4 Body growth 97 7.4.1 Routes for affecting body growth 97 7.4.2 Assumptions 97 7.4.3 Von Bertalanffy growth curve 98 7.5 Reproduction. 99 7.5.1

    33、Routes that affect reproduction. 99 7.5.2 Assumptions 100 7.5.3 Implication . 100 7.6 Population growth. 101 7.6.1 General . 101 7.6.2 Assumptions 101 7.7 Parameters of effect models 103 7.7.1 General . 103 7.7.2 Effect parameters 103 7.7.2.1 Toxicity and dynamic parameters . 103 7.7.2.2 Killing rat

    34、e, b k . 104 7.7.3 Discussion . 105 7.7.4 Eco-physiological parameters. 107 7.8 Recommendations 109 7.8.1 Goodness of fit 109 7.8.2 Choice of modes of action . 110 7.8.3 Experimental design . 110 7.8.4 Building a database for raw data. 110 7.9 Software support. 110 7.9.1 General . 110 7.9.2 DEBtox .

    35、 111 7.9.3 DEBtool 111 ISO/TS 20281:2006(E) ISO 2006 All rights reserved vii 8 List of existing guidelines with references to the subclauses of this Technical Specification.112 Annex A (informative) Analysis of an “acute immobilization of Daphnia magna” data set (OECD GL 202 ISO 6341) using the thre

    36、e presented approaches115 A.1 Data set (see Table A.1) .115 A.2 Examples of data analysis using hypothesis testing (NOEC determination) .115 A.3 Example of data analysis by dose-response modelling120 A.4 Example of data analysis using DEBtox (biological methods).125 Annex B (informative) Analysis of

    37、 an “algae growth inhibition” data set using the three presented approaches.127 B.1 General127 B.2 Examples of data analysis using hypothesis testing (NOEC determination) .128 B.3 Example of data analysis by dose-response modelling135 B.4 Examples of data analysis using DEBtox (biological methods).1

    38、39 Annex C (informative) Analysis of an “Daphnia magna reproduction” data set (OECD GL 211 ISO 10706) using the three presented approaches142 C.1 Examples of data analysis using hypothesis testing (NOEC determination) .143 C.2 Example of data analysis by dose-response modelling148 C.3 Examples of da

    39、ta analysis using DEBtox (biological methods).155 Annex D (informative) Analysis of a “fish growth” data set (OECD GL 204/215 ISO 10229) using the three presented approaches 160 D.1 Data set .160 D.2 Examples of data analysis using hypothesis testing (NOEC determination) .162 D.3 Example of data ana

    40、lysis by dose-response modelling172 D.4 Examples of data analysis using DEBtox (biological methods).177 Annex E (informative) Description and power of selected tests and methods.180 E.1 Description of selected methods for use with quantal data .180 E.2 Power of the Cochran-Armitage test .189 E.3 Des

    41、cription of selected tests for use with continuous data .198 E.4 Power of step-down Jonckheere-Terpstra test 218 Annex F (informative) Annex to Clause 7 “Biology-based methods”231 F.1 General231 F.2 Effects on survival.231 Bibliography 237 Figure 1 Conceptual illustration of accuracy and precision.

    42、2 Figure 2 Illustration of a concentration-response relationship and of the estimates of the EC xand NOEC/LOEC . 5 Figure 3 Analysis of quantal data: Methods for determining the NOEC . 23 Figure 4 Analysis of continuous data: Methods for determining the NOEC 24 Figure 5 Analysis of continuous data:

    43、Methods for determining the NOEC (continued) 24 Figure 6 Flow-chart for dose-response modelling. 50 ISO/TS 20281:2006(E) viii ISO 2006 All rights reservedFigure 7 Probit model fitted to observed mortality frequencies (triangles) as a function of log-dose .52 Figure 8 Logit model fitted to mortality

    44、dose-response data (triangles) 53 Figure 9 Weibull model fitted to mortality dose-response data (triangles) 54 Figure 10 Logit model fitted to mortality dose-response data (triangles), with background mortality .57 Figure 11 Two members from a nested family of models fitted to the same data set.66 F

    45、igure 12 Cholinesterase inhibition as a function of dose at three exposure durations71 Figure 13 Relative liver masses against dose, plotted on log-scale .72 Figure 14 Dose-response model fitted to the data of Figure 13, showing that the heterogeneous variance was caused by males (triangles) and fem

    46、ales (circles) responding differently to the chemical 73 Figure 15 Model fitted to dose-response data with and without an outlier in the top dose .76 Figure 16 Two different models (both with four parameters) fitted to the same data set resulting in similar dose-response relationships79 Figure 17 Tw

    47、o data sets illustrating that passing a goodness-of-fit test is not sufficient for accepting the model.80 Figure 18 Observed biomasses (marks) as a function of time, for nine different concentrations of Atrazine.84 Figure 19 Growth rates as derived from biomasses observed in time (see Figure 18) at

    48、nine different concentrations (including zero), with the Hill model fitted to them84 Figure 20 Estimated growth rates as a function of (log-)concentration Atrazine 85 Figure 21 Fluxes of material and energy through an animal, as specified in the DEB model.92 Figure 22 Time and concentration profiles

    49、 of the hazard model, together with the data of Figure 2795 Figure 23 Time and concentration profiles for effects on growth of Pimephalus promelas via an increase of specific maintenance costs by sodium pentachlorophenate (data by Ria Hooftman, TNO-Delft)98 Figure 24 Time and concentration profiles for effects on growth of Lumbricus rubellus via a decrease of assimilation by copper chloride (data from Klok and de Roos 1996) 99 Figure 25 Effects of cadmium on the reproduction of Daph


    注意事项

    本文(ISO TS 20281-2006 Water quality - Guidance on statistical interpretation of ecotoxicity data《水质 生态毒性数据的统计说明指南》.pdf)为本站会员(priceawful190)主动上传,麦多课文档分享仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知麦多课文档分享(点击联系客服),我们立即给予删除!




    关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

    copyright@ 2008-2019 麦多课文库(www.mydoc123.com)网站版权所有
    备案/许可证编号:苏ICP备17064731号-1 

    收起
    展开