欢迎来到麦多课文档分享! | 帮助中心 海量文档,免费浏览,给你所需,享你所想!
麦多课文档分享
全部分类
  • 标准规范>
  • 教学课件>
  • 考试资料>
  • 办公文档>
  • 学术论文>
  • 行业资料>
  • 易语言源码>
  • ImageVerifierCode 换一换
    首页 麦多课文档分享 > 资源分类 > PPTX文档下载
    分享到微信 分享到微博 分享到QQ空间

    六年级数学第37周对策问题奥数课件.pptx

    • 资源ID:1216338       资源大小:169.59KB        全文页数:12页
    • 资源格式: PPTX        下载积分:5000积分
    快捷下载 游客一键下载
    账号登录下载
    微信登录下载
    二维码
    微信扫一扫登录
    下载资源需要5000积分(如需开发票,请勿充值!)
    邮箱/手机:
    温馨提示:
    如需开发票,请勿充值!快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如需开发票,请勿充值!如填写123,账号就是123,密码也是123。
    支付方式: 支付宝扫码支付    微信扫码支付   
    验证码:   换一换

    加入VIP,交流精品资源
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    六年级数学第37周对策问题奥数课件.pptx

    1、第37周 对策问题,同学们都熟悉“田忌与齐王赛马”的故事,这个故事给我们的启示是:田忌采用了“扬长避短”的策略,取得了胜利。 生活中的许多事物都蕴含着数学道理,人们在竞赛和争斗中总是玩游戏,大至体育比赛、军事较量等,人们在竞赛和争斗中总是希望自己或自己的一方获取胜利,这就要求参与竞争的双方都要制定出自己的策略,这就是所谓“知己知彼,百战不殆”。哪一方的策略更胜一筹,哪一方就会取得最终的胜利。 解决这类问题一般采用逆推法和归纳法。,一、知识要点,【例题1】 两个人做一个移火柴的游戏,比赛的规则是:两人从一堆火柴中可轮流移走1至7根火柴,直到移尽为止。挨到谁移走最后一根火柴就算谁输。如果开始时有1

    2、000根火柴,首先移火柴的人在第一次移走多少根时才能在游戏中保证获胜。 【思路导航】先移火柴的人要取胜,只要取走第999根火柴,即利用逆推法就可得到答案。 设先移的人为甲,后移的人为乙。甲要取胜只要取走第999根火柴。因此,只要取到第991根就可以了(如乙取1根甲就取7根;如乙取2根甲就取6根。依次类推,甲取的与乙取的之和为8根火柴)。由此继续推下去,甲只要取第983根,第975根,第7根就能保证获胜。 所以,先移火柴的人要保证获胜,第一次应移走7根火柴。,二、精讲精练,【练习1】1、一堆火柴40根,甲、乙两人轮流去拿,谁拿到最后一根谁胜。每人每次可以拿1至3根,不许不拿,乙让甲先拿。问:谁能

    3、一定取胜?他要取胜应采取什么策略?2、两人轮流报数,规定每次报的数都是不超过8的自然数,把两人报的数累加起来,谁先报到88,谁就获胜。问:先报数者有必胜的策略吗?3、把1994个空格排成一排,第一格中放一枚棋子,甲、乙两人轮流移动棋子,每人每次可后移1格、2格、3格,谁先移到最后一格谁胜。先移者确保获胜的方法是什么?,第37周 对策问题 疯狂操练二,【例题2】 有1987粒棋子。甲、乙两人分别轮流取棋子,每次最少取1粒,最多取4粒,不能不取,取到最后一粒的为胜者。现在两人通过抽签决定谁先取。你认为先取的能胜,还是后取的能胜?怎样取法才能取胜? 【思路导航】 从结局开始,倒推上去。不妨设甲先取,

    4、乙后取,剩下1至4粒,甲可以一次拿完。如果剩下5粒棋子,则甲不能一次拿完,乙胜。因此甲想取胜,只要在某一时刻留下5粒棋子就行了。不妨设甲先取,则甲能取胜。甲第一次取2粒,以后无论乙拿几粒,甲只要使自己的粒数与乙拿的粒数之和正好等于5,这样,每一轮后,剩下的棋子粒数总是5的倍数,最后总能留下5粒棋子,因此,甲先取必胜。,【练习2】1、甲、乙两人轮流从1993粒棋子中取走1粒或2粒或3粒,谁取到最后一粒的是胜利者,你认为先取的能获胜,还是后取的能获胜,应采取什么策略?2、有1997根火柴,甲、乙两人轮流取火柴,每人每次可取1至10根,谁能取到最后一根谁为胜利者,甲先取,乙后取。甲有获胜的可能吗?取

    5、胜的策略是什么?3、盒子里有47粒珠子,两人轮流取,每次最多取5粒,最少取1粒,谁最先把盒子的珠子取完,谁就胜利,小明和小红来玩这个取珠子的游戏,先名先、小红后,谁胜?取胜的策略是什么?,第37周 对策问题 疯狂操练三,【例题3】 在黑板上写有999个数:2,3,4,1000。甲、乙两人轮流擦去黑板上的一个数(甲先擦,乙后擦),如果最后剩下的两个数互质,则甲胜,否则乙胜。谁必胜?必胜的策略是什么? 【思路导航】 甲先擦去1000,剩下的998个数,分为499个数对:(2,3),(4,5),(6,7),(998,999)。可见每一对数中的两个数互质。如果乙擦去某一对中的一个,甲则接着擦去这对中的

    6、另一个,这样乙、甲轮流去擦,总是一对数、一对数地擦,最后剩下的一对数必互质。所以,甲必胜。,【练习3】1、甲、乙两人轮流从分别写有1,2,3,99的99张卡片中任意取走一张,先取卡的人能否保证在他取走的第97张卡片时,使剩下的两张卡片上的数一个是奇数,一个是偶数?2、两个人进行如下游戏,即两个人轮流从数列1,2,3,100,101勾去九个数。经过这样的11次删除后,还剩下两个数。如果这两个数的差是55,这时判第一个勾数的人获胜。问第一个勾数的人能否获胜?获胜的策略是什么?3、在黑板上写n1(n3)个数:2,3,4,n。甲、乙两人轮流在黑板上擦去一个数。如果最后剩下的两个数互质,则乙胜,否则甲胜

    7、。N分别取什么值时:(1)甲必胜?(2)乙必胜?必胜的策略是什么?,第37周 对策问题 疯狂操练四,【例题4】甲、乙两人轮流在黑板上写下不超过10的自然数,规定禁止在黑板上写已写过的数的约数,最后不能写的人为失败者。如果甲第一个写,谁一定获胜?写出一种获胜的方法。 【思路导航】 这里关键是第一次写什么数,总共只有10个数,可通过归纳试验。甲不能写1,否则乙写6,乙可获胜;甲不能写3,5,7,否则乙写8,乙可获胜;甲不能写4,9,10,否则乙写6,乙可获胜。因此,甲先写6或8,才有可能获胜。 甲可以获胜。如甲写6,去掉6的约数1,2,3,6,乙只能写4,5,7,8,9,10这六个数中的一个,将这

    8、六个数分成(4,5),(7,9),(8,10)三组,当乙写某组中的一个数,甲就写另一个数,甲就能获胜。,【练习4】1、甲、乙两人轮流在黑板上写上不超过14的自然数。书写规则是:不允许写黑板上已写过的数的约数,轮到书写人无法再写时就是输者。现甲先写,乙后写,谁能获胜?应采取什么对策?2、甲、乙两人轮流从分别写有3,4,5,11的9张卡片中任意取走一张,规定取卡人不能取已取过的数的倍数,轮到谁无法再取时,谁就输。现甲先取,乙后取,甲能否必然获绳?应采取的对策是什么?3、甲、乙两人轮流在2004粒棋子中取走1粒,3粒,5粒或7粒棋子。甲先取,乙后取,取到最后一粒棋子者为胜者。甲、乙两人谁能获胜?,第

    9、37周 对策问题 疯狂操练五,【例题5】 有一个33的棋盘以及9张大小为一个方格的卡片如图37-1所示,9张卡片分别写有:1,3,4,5,6,7,8,9,10这几个数。小兵和小强两人做游戏,轮流取一张卡片放在9格中的一格,小兵计算上、下两行6个数的和;小强计算左、右两列6个数的和,和数大的一方取胜。小兵一定能取胜吗? 【思路导航】 由于4个角的数是两人共有的,因而和数的大小只与放在A,B,C,D这4个格中的数有关。 小兵要获胜,必须采取如下策略,尽可能把大数填入A或C格,尽可能将小数填入B格或D格。 由于1+103+9,即B+DA+C,小兵应先将1放在B格,如小强把10放进D格,小兵再把9放进A格,这时不论小强怎么做,C格中一定是大于或等于3的数,因而小兵获胜。如小强把3放进A格,小兵只需将9放到C格,小兵也一定获胜。100=180(次)。,【练习5】1、在55的棋盘的右上角放一枚棋子,每一步只能向左、想下或向左下对角线走一格。两人交替走,谁为胜者。必胜的策略是什么?2、甲、乙两人轮流往一个圆桌面上放同样大小的硬币,规则是每人每次只能放一枚,硬币不能重叠,谁放完最后一枚硬币而使对方再无处可放,谁就获胜。如果甲先放,那么他怎样才能取胜?3、两人轮流在33的方格中画“”和“”,规定每人每次至少画一格,至多画三格,所有的格画满后,谁画的符号总数为偶数,谁就获胜。谁有获胜的策略?,


    注意事项

    本文(六年级数学第37周对策问题奥数课件.pptx)为本站会员(rimleave225)主动上传,麦多课文档分享仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知麦多课文档分享(点击联系客服),我们立即给予删除!




    关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

    copyright@ 2008-2019 麦多课文库(www.mydoc123.com)网站版权所有
    备案/许可证编号:苏ICP备17064731号-1 

    收起
    展开