欢迎来到麦多课文档分享! | 帮助中心 海量文档,免费浏览,给你所需,享你所想!
麦多课文档分享
全部分类
  • 标准规范>
  • 教学课件>
  • 考试资料>
  • 办公文档>
  • 学术论文>
  • 行业资料>
  • 易语言源码>
  • ImageVerifierCode 换一换
    首页 麦多课文档分享 > 资源分类 > PPT文档下载
    分享到微信 分享到微博 分享到QQ空间

    2019高中数学第二章概率2.4二项分布课件北师大版选修2_3.ppt

    • 资源ID:1207020       资源大小:4.27MB        全文页数:35页
    • 资源格式: PPT        下载积分:5000积分
    快捷下载 游客一键下载
    账号登录下载
    微信登录下载
    二维码
    微信扫一扫登录
    下载资源需要5000积分(如需开发票,请勿充值!)
    邮箱/手机:
    温馨提示:
    如需开发票,请勿充值!快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如需开发票,请勿充值!如填写123,账号就是123,密码也是123。
    支付方式: 支付宝扫码支付    微信扫码支付   
    验证码:   换一换

    加入VIP,交流精品资源
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    2019高中数学第二章概率2.4二项分布课件北师大版选修2_3.ppt

    1、4 二项分布,二项分布 进行n次试验,如果满足以下条件: (1)每次试验只有两个相互对立的结果,可以分别称为“成功”和“失败”; (2)每次试验“成功”的概率均为p,“失败”的概率均为1-p; (3)各次试验是相互独立的. 用X表示这n次试验中成功的次数,则若一个随机变量X的分布列如上所述,称X服从参数为n,p的 二项分布,简记为XB(n,p).,名师点拨1.二项分布实际上只是对n次独立重复试验从概率分布的角度作了进一步的阐述,是概率论中最重要的几种分布之一. 2.判断一个随机变量是否服从二项分布,关键有二:其一是对立性,即一次试验中只有两个相互对立的结果,可以分别称为“成功”和“失败”,二者

    2、必居其一;其二是重复性,即试验是独立重复地进行了n次.,答案:C,答案:(1) (2) (3) (4),探究一,探究二,探究三,思维辨析,【例1】 甲、乙两人各射击一次,击中目标的概率分别是 假设两人射击是否击中目标相互之间没有影响;每人各次射击是否击中目标相互之间也没有影响. (1)求甲射击4次,至少有1次未击中目标的概率; (2)求两人各射击4次,甲恰好击中目标2次且乙恰好击中目标3次的概率; (3)假设某人连续2次未击中目标,则中止其射击,问:乙恰好射击5次后,被中止射击的概率是多少?,探究一,探究二,探究三,思维辨析,分析(1)从对立事件的角度考虑比较容易解决;(2)甲射击4次击中目标

    3、2次,乙射击4次击中目标3次,两者均为独立重复试验,而这两个事件又为相互独立事件,故可用相互独立事件同时发生的概率公式求解;(3)依题意后3次射击情形必为:击中、未击中、未击中的分布,而前2次的射击不能为两次都未击中,而这些情形都是相互独立的,故可用相互独立事件同时发生的概率公式求解.,探究一,探究二,探究三,思维辨析,探究一,探究二,探究三,思维辨析,探究一,探究二,探究三,思维辨析,反思感悟 1.二项分布有以下两个特点: (1)对立性,即一次试验中,事件发生与否二者必居其一; (2)重复性,即试验是独立重复地进行了n次.,探究一,探究二,探究三,思维辨析,变式训练 1某辆载有5位乘客的公共

    4、汽车在某停靠点停车.若车上每位乘客在该停靠点下车的概率均为 ,则表示这5位乘客中在该停靠点下车的人数,求随机变量的分布列.,探究一,探究二,探究三,思维辨析,【例2】 一款击鼓小游戏的规则如下:每盘游戏都需击鼓三次,每次击鼓要么出现一次音乐,要么不出现音乐;每盘游戏击鼓三次后,出现一次音乐获得10分,出现两次音乐获得20分,出现三次音乐获得100分,没有出现音乐则扣除200分(即获得-200分).设每次击鼓出现音乐的概率为 ,且各次击鼓出现音乐相互独立. (1)设每盘游戏获得的分数为X,求X的分布列; (2)玩三盘游戏,至少有一盘出现音乐的概率是多少?,分析本题是一个独立重复试验问题,其出现音

    5、乐的次数X的概率分布列服从二项分布,可直接由二项分布得出.,探究一,探究二,探究三,思维辨析,探究一,探究二,探究三,思维辨析,反思感悟 1.独立重复试验问题,随机变量X服从二项分布,即XB(n,p),这里n是独立重复试验的次数,p是每次试验中事件发生的概率. 2.满足二项分布常见的实例有:反复抛掷一枚均匀硬币;已知次品率的抽样;有放回的抽样;射手射击目标命中率已知的若干次射击.,探究一,探究二,探究三,思维辨析,变式训练2 学校游园活动有这样一个游戏项目:甲箱子里装有3个白球、2个黑球,乙箱子里装有1个白球、2个黑球,这些球除颜色外完全相同.每次游戏从这两个箱子里各随机摸出2个球,若摸出的白

    6、球不少于2个,则获奖.(每次游戏结束后将球放回原箱) (1)求在1次游戏中,摸出3个白球的概率;获奖的概率; (2)求在2次游戏中获奖次数X的分布列.,探究一,探究二,探究三,思维辨析,探究一,探究二,探究三,思维辨析,探究一,探究二,探究三,思维辨析,【例3】一名学生骑自行车上学,他到学校的途中有6个交通岗,假设他在各个交通岗遇到红灯的事件是相互独立的,并且概率都是 (1)设X为这名学生在途中遇到的红灯次数,求X的分布列; (2)设Y为这名学生在首次停车前经过的路口数,求Y的分布列; (3)求这名学生在途中至少遇到一次红灯的概率.,分析先正确求得各变量取各值的概率,再列出各变量的分布列.,探

    7、究一,探究二,探究三,思维辨析,探究一,探究二,探究三,思维辨析,探究一,探究二,探究三,思维辨析,探究一,探究二,探究三,思维辨析,反思感悟 1.利用二项分布解题的关键在于建立二项分布的模型,也就是看它是否为n次独立重复试验,随机变量是否为在这n次独立重复试验中某事件发生的次数,满足这两点的随机变量才服从二项分布,否则就不服从二项分布. 2.在解题时,要注意概率的加法公式、乘法公式、“正难则反”思想(利用对立事件求概率)的灵活运用.,探究一,探究二,探究三,思维辨析,变式训练 3有人预测:在2020年世界女排大奖赛上,亚洲区决赛将在中国队与日本队之间展开,据以往统计,中国队在每局比赛中胜日本

    8、队的概率均为 ,比赛采取五局三胜制,谁先胜三局谁就获胜,并停止比赛. (1)求中国队以31获胜的概率; (2)设X表示比赛的局数,求X的分布列.,探究一,探究二,探究三,思维辨析,探究一,探究二,探究三,思维辨析,探究一,探究二,探究三,思维辨析,纠错心得 在解题过程中,不要将表面像是n次独立重复试验(实质上不是)不假思索地按n次独立重复试验进行.对于有些问题表面看不是n次独立重复试验问题,但经过转化后可看作独立重复试验,从而将问题简化.由此可看到转化思想在数学问题的处理中所发挥的重要作用.,探究一,探究二,探究三,思维辨析,变式训练 甲、乙两队进行7局4胜制的比赛,即甲队或乙队谁先累计获胜4

    9、局比赛,即为冠军.若在每局比赛中,甲队获胜的概率均为0.6,每局比赛必分出胜负,且每局比赛的胜负不影响下局比赛. 求:(1)甲队在第5局比赛后获得冠军的概率为多少? (2)甲队获得冠军的概率为多少? 解由题意,知甲队获胜,即无论打几局,最后1局甲队必胜,甲队胜的概率为0.6. (1)甲队在第5局比赛后获得冠军,则甲队第5局必获胜,前4局有3局获胜,(2)甲队获冠军可以是打4局、5局、6局、7局,1,2,3,4,5,1.下列随机变量X的分布列不属于二项分布的是( ) A.投掷一个骰子5次,X表示点数为6出现的次数 B.某射手射中目标的概率为p,设每次射击是相互独立的,X为从开始射击到击中目标所需

    10、要的射击次数 C.实力相当的甲、乙两选手举行了5局乒乓球比赛,X表示甲获胜的次数 D.某星期内,每次下载某网站数据后被病毒感染的概率为0.3,X表示下载n次数据后电脑被病毒感染的次数,1,2,3,4,5,解析选项A,试验出现的结果只有两个点数为6和点数不为6,且点数为6的概率在每一次试验中都为 ,每一次试验都是独立的,共进行5次,故随机变量X服从二项分布;选项B,虽然随机变量在每一次试验中的结果只有两种,且每一次试验事件相互独立且概率不发生变化,但随机变量的取值不确定,故随机变量X不服从二项分布;选项C,甲、乙的获胜率都相等,举行5次比赛,相当于进行了5次试验,故X服从二项分布;选项D,由二项分布的定义可知,被病毒感染次数XB(n,0.3). 答案B,1,2,3,4,5,1,2,3,4,5,1,2,3,4,5,1,2,3,4,5,5.有一批玉米种子,其发芽率是0.8.每穴只要有一个发芽,就不需补种,否则需要补种,问每穴至少种几粒种子,才能保证每穴不需补种的概率大于98%?(lg 2=0.301 0),


    注意事项

    本文(2019高中数学第二章概率2.4二项分布课件北师大版选修2_3.ppt)为本站会员(priceawful190)主动上传,麦多课文档分享仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知麦多课文档分享(点击联系客服),我们立即给予删除!




    关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

    copyright@ 2008-2019 麦多课文库(www.mydoc123.com)网站版权所有
    备案/许可证编号:苏ICP备17064731号-1 

    收起
    展开