欢迎来到麦多课文档分享! | 帮助中心 海量文档,免费浏览,给你所需,享你所想!
麦多课文档分享
全部分类
  • 标准规范>
  • 教学课件>
  • 考试资料>
  • 办公文档>
  • 学术论文>
  • 行业资料>
  • 易语言源码>
  • ImageVerifierCode 换一换
    首页 麦多课文档分享 > 资源分类 > DOC文档下载
    分享到微信 分享到微博 分享到QQ空间

    (新课标)2020高考数学大一轮复习第九章解析几何题组层级快练63直线与圆锥曲线的位置关系文(含解析).doc

    • 资源ID:1204293       资源大小:2.34MB        全文页数:8页
    • 资源格式: DOC        下载积分:2000积分
    快捷下载 游客一键下载
    账号登录下载
    微信登录下载
    二维码
    微信扫一扫登录
    下载资源需要2000积分(如需开发票,请勿充值!)
    邮箱/手机:
    温馨提示:
    如需开发票,请勿充值!快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如需开发票,请勿充值!如填写123,账号就是123,密码也是123。
    支付方式: 支付宝扫码支付    微信扫码支付   
    验证码:   换一换

    加入VIP,交流精品资源
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    (新课标)2020高考数学大一轮复习第九章解析几何题组层级快练63直线与圆锥曲线的位置关系文(含解析).doc

    1、1题组层级快练(六十三)1若过原点的直线 l 与双曲线 1 有两个不同交点,则直线 l 的斜率的取值范围是x24 y23( )A( , B( , )32 32 32 32C , D(, ,)32 32 32 32答案 B解析 1,其两条渐近线的斜率分别为 k1 ,k 2 ,要使过原点的直线 lx24 y23 32 32与双曲线有两个不同的交点,画图可知,直线 l 的斜率的取值范围应是0, )32( ,0322已知椭圆 x22y 24,则以(1,1)为中点的弦的长度为( )A3 B22 3C. D.303 326答案 C解析 设 y1k(x1),ykx1k.代入椭圆方程,得 x22(kx1k)

    2、24.(2k 21)x 24k(1k)x2(1k) 240.由 x1x 2 2,得 k ,x 1x2 .4k( k 1)2k2 1 12 13(x 1x 2)2(x 1x 2)24x 1x24 .43 83|AB| .1 14 263 3033(2019辽宁师大附中期中)过点 M(2,0)的直线 m 与椭圆 y 21 交于 P1,P 2两点,x22线段 P1P2的中点为 P,设直线 m 的斜率为 k1(k10),直线 OP 的斜率为 k2,则 k1k2的值为( )A2 B2C. D12 12答案 D2解析 设 P1(x1,y 1),P 2(x2,y 2),P(x,y),则x122 y12 1,

    3、x222 y22 1.)两式相减,得 (y 1y 2)(y1y 2)0.( x1 x2) ( x1 x2)2即 2y(y 1y 2)0.2x( x1 x2)2k 1 ,又k 2 .x2y yxk 1k2 .124(2019衡水中学调研)过抛物线 x24y 的焦点作两条互相垂直的弦 AB,CD,则 1|AB|( )1|CD|A2 B4C. D.12 14答案 D解析 根据题意,抛物线的焦点为(0,1),设直线 AB 的方程为 ykx1(k0),直线 CD的方程为 y x1,由 得 y2(24k 2)y10,由根与系数的关系得1k y kx 1,x2 4y, )yAy B24k 2,所以|AB|y

    4、 Ay B244k 2,同理|CD|y Cy D24 ,所以4k2 ,故选 D.1|AB| 1|CD| 14k2 4 k24k2 4 145(2019福州外国语学校适应性考试)已知双曲线 C: 1(a0,b0)的焦距为x2a2 y2b22 ,抛物线 y x2 与双曲线 C 的渐近线相切,则双曲线 C 的方程为( )514 14A. 1 B. 1x28 y22 x22 y28Cx 2 1 D. y 21y24 x24答案 D解析 由题意可得 c ,即 a2b 25,双曲线的渐近线方程为 y x.将渐近线方程和5ba抛物线方程 y x2 联立,可得 x2 x 0,由渐近线和抛物线相切可得14 14

    5、 14 ba 143 4 0,即有 a24b 2,又 a2b 25,解得 a2,b1,可得双曲线的方程b2a2 14 14为 y 21.故选 D.x246(2019潍坊考试)已知抛物线 y24x 与直线 2xy30 相交于 A,B 两点,O 为坐标原点,设 OA,OB 的斜率分别为 k1,k 2,则 的值为( )1k1 1k2A B14 12C. D.14 12答案 D解析 设 A( ,y 1),B( ,y 2),易知 y1y20,则 k1 ,k 2 ,所以 y124 y224 4y1 4y2 1k1 1k2,将 x 代入 y24x,得 y22y60,所以 y1y 22, .y1 y24 y

    6、32 1k1 1k2 127(2019石家庄质量检测一)双曲线 1(a0,b0)的左、右焦点分别为 F1,F 2,x2a2 y2b2过 F1作倾斜角为 60的直线与 y 轴和双曲线的右支分别交于 A,B 两点,若点 A 平分线段F1B,则该双曲线的离心率是( )A. B23 3C2 D. 12答案 B解析 由题意可知 A 是 F1B 的中点,O 是 F1F2的中点(O 为坐标原点),连接 BF2,则 OA 是F1BF2的中位线故 OABF 2,故 F1F2BF 2,又BF 1F260,|F1F2|2c,|BF 1|4c,|BF 2|2 c,2a4c2 c,e 2 ,故选 B.3 3ca 38(

    7、2019沧州七校联考)已知直线 l1:ykx2(k0)与椭圆 C: 1 相切,且切x24 y23点为 M,F 是椭圆 C 的左焦点,直线 l2过点 M 且垂直于直线 l1,交椭圆于另一点 N,则MNF 的面积是( )A. B.1519 4519C. D.1538 4538答案 D解析 由 可得(34k 2)x216kx40,y kx 2,x24 y23 1, )4因为直线 l1与椭圆 C 相切于点 M,所以 (16k) 24(34k 2)448(4k 21)0,又 k0,所以 k ,M(1, ),12 32故 l2:y2(x1) 2x ,32 12代入椭圆方程得 19x28x110,解得 x1

    8、1,x 2 ,则 y1 ,y 2 ,1119 32 6338设 l2与 x 轴的交点为 A,则 A( ,0),14又 F(1,0),所以MNF 的面积 S |AF|y2y 1| | | .故选 D.12 12 34 6338 32 45389已知椭圆 1(ab0)的左焦点 F(c,0)关于直线 bxcy0 的对称点 P 在椭圆x2a2 y2b2上,则椭圆的离心率是( )A. B.24 34C. D.33 22答案 D解析 设焦点 F(c,0)关于直线 bxcy0 的对称点为 P(m,n),则 所以nm c( bc) 1,bm c2 cn2 0, ) nm c cb,bm bc nc 0, )所

    9、以 m (12e 2)c,n 2be 2.b2c c3b2 c2 ( a2 2c2) ca2 c2b bc2b2 c2 2bc2a2因为点 P(m,n)在椭圆上,所以 1,即(12e 2)2e24e 41,即( 1 2e2) 2c2a2 4b2e4b24e6e 210,将各选项代入知 e 符合,故选 D.2210(2019福州质检)已知圆 C:(x5) 2(y )28,抛物线 E:x 22py(p0)上两点12A(2,y 1)与 B(4,y 2),若存在与直线 AB 平行的一条直线和 C 与 E 都相切,则 E 的准线方程为( )Ax By112Cy Dx1125答案 C解析 由题意知,A(2

    10、, ),B(4, ),k AB ,设抛物线 E 上的切点为2p 8p 8p 2p4 ( 2) 1p(x0,y 0),由 y ,得 y , ,x 01,切点为(1, ),x22p xp x0p 1p 12p切线方程为 y (x1),即 2x2py10,12p 1p切线 2x2py10 与圆 C 相切,圆心 C(5, )到切线的距离为 2 ,即 212 2 |9 p|4 4p2,231p 218p490,(p1)(31p49)0,p0,p1.抛物线 x22y 的准线方程为 y ,故选 C.1211(2019广东七校联考)过抛物线 y24x 的焦点 F 的直线交该抛物线于 A,B 两点,若|AF|3

    11、,则|BF|_答案 32解析 p2, ,1|AF| 1|BF| 2p 1,|BF| .13 1|BF| 3212(2019武汉市武昌高三调考)过抛物线 C:y 24x 的焦点 F 的直线 l 与抛物线 C 交于P,Q 两点,与准线交于点 M,且 3 ,则| |_FM FP FP 答案 43解析 过点 P 作 PP1垂直准线于 P1,由 3 ,得|PM|2|PF|.FM FP 又由抛物线的定义知|PF|PP 1|,所以|PM|2|PP 1|.由三角形相似,得 ,所以|PP 1| ,所以| | .|PP1|p |PP1|2 |MP|MF| 23 43 FP 4313(2019天星联考二)已知抛物线

    12、 y24x 的焦点为 F,其准线与 x 轴交于点 A,过 A 作直线 l 与抛物线交于 M,N 两点,则|FM| 2|FN| 2的取值范围为_答案 (8,)解析 抛物线 y24x 的焦点为 F(1,0),其准线 x1 与 x 轴交于 A(1,0),显然直线l 的斜率存在且不为 0,设 l 的方程为 yk(x1),k0,与 y24x 联立并化简整理得6x2(2 )x10,(2 )240,即 1,设 M(x1,y 1),N(x 2,y 2),则4k2 4k2 1k2x1x 2 2,x 1x21.4k2方法一:由抛物线的定义知,|FM|x 11,|FN|x 21,则|FM| 2|FN| 2(x 11

    13、)2(x 21) 2(x 1x 2)22x 1x22(x 1x 2)2( 2) 22( 2)( 1) 218,即4k2 4k2 4k2|FM|2|FN| 2的取值范围为(8,)方法二:由两点间的距离公式,知|FM| 2|FN| 2(x 11) 2y 12(x 21) 2y 22(x 11)24x 1(x 21) 24x 2(x 1x 2)22x 1x22(x 1x 2)2( 2) 22( 2)( 1)4k2 4k2 4k2218,即|FM| 2|FN| 2的取值范围为(8,)14(2019河南洛阳第一次统考)已知抛物线 C:x 22py(y0),过焦点 F 的直线交 C 于A,B 两点,D 是

    14、抛物线的准线 l 与 y 轴的交点(1)若 ABl,且ABD 的面积为 1,求抛物线 C 的方程;(2)设 M 为 AB 的中点,过 M 作 l 的垂线,垂足为 N,证明:直线 AN 与抛物线相切答案 (1)x 22y (2)略解析 (1)ABl,|FD|p,|AB|2p.S ABD p 21.p1.抛物线 C 的方程为 x22y.(2)证明:设直线 AB 的方程为 ykx ,p2联立 得 x22kpxp 20.y kx p2,x2 2py, )设方程的两根分别为 x1,x 2,则 x1x 22kp,x 1x2p 2.设 A(x1, ),B(x 2, )x122p x222p设 M(kp,k

    15、2p ),N(kp, )p2 p2k AN .x122p p2x1 kpx122p p2x1 x1 x22x12 p22px1 x22x12 x1x22px1 x22 x1p又x 22py,y .xp抛物线 x22py 在点 A 处的切线斜率 k .x1p7直线 AN 与抛物线相切15抛物线 y24x 的焦点为 F,过点 F 的直线交抛物线于 A,B 两点(1)若 2 ,求直线 AB 的斜率;AF FB (2)设点 M 在线段 AB 上运动,原点 O 关于点 M 的对称点为 C,求四边形 OACB 面积的最小值答案 (1)2 (2)42解析 (1)依题意知 F(1,0),设直线 AB 的方程为

    16、 xmy1.将直线 AB 的方程与抛物线的方程联立,消去 x,得y24my40.设 A(x1,y 1),B(x 2,y 2),所以 y1y 24m,y 1y24.因为 2 ,所以 y12y 2.AF FB 联立和,消去 y1,y 2,得 m .24所以直线 AB 的斜率是2 .2(2)由点 C 与原点 O 关于点 M 对称,得 M 是线段 OC 的中点从而点 O 与点 C 到直线 AB 的距离相等,所以四边形 OACB 的面积等于 2SAOB .因为 2SAOB 2 |OF|y1y 2|12 4 ,( y1 y2) 2 4y1y2 1 m2所以当 m0 时,四边形 OACB 的面积最小,最小值

    17、是 4.16(2019河北唐山一中期末)已知抛物线 C:x 22py(p0),圆 O:x 2y 21.(1)若抛物线 C 的焦点 F 在圆上,且 A 为 C 和圆 O 的一个交点,求|AF|;(2)若直线 l 与抛物线 C 和圆 O 分别相切于点 M,N,求|MN|的最小值及相应 p 的值答案 (1) 1 (2)2 5 2 3解析 (1)由题意得 F(0,1),C:x 24y.解方程组 得 yA 2,|AF| 1.x2 4y,x2 y2 1, ) 5 5(2)设 M(x0,y 0),则切线 l:y (xx 0)y 0,整理得 x0xpypy 00.x0p由|ON|1,得|py 0| .x02 p2 2py0 p2p 且 y0210.2y0y02 1|MN| 2|OM| 21x 02y 0212py 0y 021 y 0214 (y 021)4y02y02 1 4y02 18,当且仅当 y0 时等号成立38|MN|的最小值为 2 ,此时 p .2 3


    注意事项

    本文((新课标)2020高考数学大一轮复习第九章解析几何题组层级快练63直线与圆锥曲线的位置关系文(含解析).doc)为本站会员(syndromehi216)主动上传,麦多课文档分享仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知麦多课文档分享(点击联系客服),我们立即给予删除!




    关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

    copyright@ 2008-2019 麦多课文库(www.mydoc123.com)网站版权所有
    备案/许可证编号:苏ICP备17064731号-1 

    收起
    展开