欢迎来到麦多课文档分享! | 帮助中心 海量文档,免费浏览,给你所需,享你所想!
麦多课文档分享
全部分类
  • 标准规范>
  • 教学课件>
  • 考试资料>
  • 办公文档>
  • 学术论文>
  • 行业资料>
  • 易语言源码>
  • ImageVerifierCode 换一换
    首页 麦多课文档分享 > 资源分类 > PPT文档下载
    分享到微信 分享到微博 分享到QQ空间

    2019高考数学总复习第一章集合与函数概念1.3.1函数的单调性(第二课时)课件新人教A版必修1.ppt

    • 资源ID:1155290       资源大小:882.50KB        全文页数:16页
    • 资源格式: PPT        下载积分:5000积分
    快捷下载 游客一键下载
    账号登录下载
    微信登录下载
    二维码
    微信扫一扫登录
    下载资源需要5000积分(如需开发票,请勿充值!)
    邮箱/手机:
    温馨提示:
    如需开发票,请勿充值!快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如需开发票,请勿充值!如填写123,账号就是123,密码也是123。
    支付方式: 支付宝扫码支付    微信扫码支付   
    验证码:   换一换

    加入VIP,交流精品资源
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    2019高考数学总复习第一章集合与函数概念1.3.1函数的单调性(第二课时)课件新人教A版必修1.ppt

    1、1.3.1 函数的单调性,1.3函数的基本性质,如果对于定义域I内某个区间D上的任意两个自变量的值x1、x2,当 x1x2时,都有 f(x1) f(x2) ,那么就说函数f(x)在区间D上是增函数。,1.定义:一般的,设函数 f(x)的定义域为I:,如果对于定义域I内某个区间D上的任意两个自变量的值x1、x2,当 x1x2 时,都有 f(x1) f(x2) ,那么就说函数f(x) 在区间D上是减函数。,知识梳理:,2.判断函数单调性的方法步骤,1 任取x1,x2D,且x1x2; 2 作差f(x1)f(x2); 3 变形(通常是因式分解和配方); 4 定号(即判断差f(x1)f(x2)的正负);

    2、 5 下结论(即指出函数f(x)在给定的区间D上的单调性),利用定义证明函数f(x)在给定的区间D上的单调性的一般步骤:,题型探究,类型一 求单调区间并判断单调性,例1.函数y|x22x3|的图象如图所示,试写出它的单调区间,并指出单调性,解 y|x22x3|的单调区间有(,1,1,1,1,3,3,), 其中单调递减区间是(,1,1,3;单调递增区间是1,1,3,),反思与感悟 函数的单调性是在定义域内的某个区间上的性质,单调区间是定义域的子集;当函数出现两个以上单调区间时,单调区间之间可用“,”分开,不能用“”,可以用“和”来表示;在单调区间D上函数要么是增函数,要么是减函数,不能二者兼有,

    3、类型二 证明单调性,例2.求证:函数f(x) 在1,)上是增函数,证明: 设x1,x2是1,)上的任意实数,且1x1x2,,则f(x1)f(x2),1x1x2,x1x20,1x1x2,,即f(x1)f(x2)0,即f(x1)f(x2),函数f(x)在区间1,)上是增函数,反思与感悟 运用定义判断或证明函数的单调性时,应在函数的定义域内给定的区间上任意取x1,x2且x1x2的条件下,转化为确定f(x1)与f(x2)的大小,要牢记五大步骤:取值作差变形定号小结,类型三 单调性的应用,命题角度1 利用单调性求参数范围,例3 已知函数f(x)x22ax3在区间1,2上单调,则实数a的取值范围为_,【解

    4、析】 由于二次函数开口向上,故其增区间为a,),减区间为(,a,而f(x)在区间1,2上单调,所以1,2a,)或1,2(,a,即a1或a2.,(,12,), 若函数 是定义在R上的减函数,则a的取值范围为( ),【解析】 要使f(x)在R上是减函数,需满足:,A,反思与感悟 分段函数在定义域上单调,除了要保证各段上单调外,还要接口处不能反超另外,函数在单调区间上的图象不一定是连续不断的,命题角度2 用单调性解不等式,例4 已知yf(x)在定义域(1,1)上是减函数,且f(1a)f(2a1),求a的取值范围,解 f(1a)f(2a1)等价于,即所求a的取值范围是0a,解得0a ,,反思与感悟 若

    5、已知函数f(x)的单调性,则由x1,x2的大小,可得f(x1),f(x2)的大小;由f(x1),f(x2)的大小,可得x1,x2的大小,三达标检测,1.f(x)对任意两个不相等的实数a,b,总有 ,则必有( ) A函数f(x)先增后减 B函数f(x)先减后增 C函数f(x)是R上的增函数 D函数f(x)是R上的减函数,C,2.若函数yf(x)的定义域为R,且为增函数,f(1a)f(2a1),则a的取值范围是 。,【解析】 yf(x)的定义域为R,且为增函数, 又f(1a) ,,3.f(x)是定义在0,)上的减函数,则不等式f(x)f(2x8)的解集是_,4.求证函数f(x) 在(0,)上是减函数,【解析】对于任意的x1,x2(0,),且x1x2,,有f(x1)f(x2),0x1x2,x2x10,x2x10,,f(x1)f(x2)0,即f(x1)f(x2),,函数f(x)在(0,)上是减函数,


    注意事项

    本文(2019高考数学总复习第一章集合与函数概念1.3.1函数的单调性(第二课时)课件新人教A版必修1.ppt)为本站会员(confusegate185)主动上传,麦多课文档分享仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知麦多课文档分享(点击联系客服),我们立即给予删除!




    关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

    copyright@ 2008-2019 麦多课文库(www.mydoc123.com)网站版权所有
    备案/许可证编号:苏ICP备17064731号-1 

    收起
    展开