欢迎来到麦多课文档分享! | 帮助中心 海量文档,免费浏览,给你所需,享你所想!
麦多课文档分享
全部分类
  • 标准规范>
  • 教学课件>
  • 考试资料>
  • 办公文档>
  • 学术论文>
  • 行业资料>
  • 易语言源码>
  • ImageVerifierCode 换一换
    首页 麦多课文档分享 > 资源分类 > PPT文档下载
    分享到微信 分享到微博 分享到QQ空间

    2019高考数学二轮复习专题五解析几何第2讲椭圆、双曲线、抛物线课件.ppt

    • 资源ID:1155215       资源大小:4.77MB        全文页数:43页
    • 资源格式: PPT        下载积分:5000积分
    快捷下载 游客一键下载
    账号登录下载
    微信登录下载
    二维码
    微信扫一扫登录
    下载资源需要5000积分(如需开发票,请勿充值!)
    邮箱/手机:
    温馨提示:
    如需开发票,请勿充值!快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如需开发票,请勿充值!如填写123,账号就是123,密码也是123。
    支付方式: 支付宝扫码支付    微信扫码支付   
    验证码:   换一换

    加入VIP,交流精品资源
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    2019高考数学二轮复习专题五解析几何第2讲椭圆、双曲线、抛物线课件.ppt

    1、第2讲 椭圆、双曲线、抛物线,高考定位 1.圆锥曲线的方程与几何性质是高考的重点,多以选择题、填空题或解答题的一问的形式命题;2直线与圆锥曲线的位置关系是命题的热点,尤其是有关弦长计算及存在性问题,运算量大,能力要求高,突出方程思想、转化化归与分类讨论思想方法的考查.,真 题 感 悟,答案 A,答案 D,答案 D,(1)解 由已知得F(1,0),l的方程为x1.,(2)证明 当l与x轴重合时,OMAOMB0. 当l与x轴垂直时,OM为AB的垂直平分线, 所以OMAOMB. 当l与x轴不重合也不垂直时, 设l的方程为yk(x1)(k0),A(x1,y1),B(x2,y2),,从而kMAkMB0,

    2、故MA,MB的倾斜角互补. 所以OMAOMB.综上,OMAOMB.,1.圆锥曲线的定义,(1)椭圆:|MF1|MF2|2a(2a|F1F2|); (2)双曲线:|MF1|MF2|2a(2a|F1F2|); (3)抛物线:|MF|d(d为M点到准线的距离). 温馨提醒 应用圆锥曲线定义解题时,易忽视定义中隐含条件导致错误.,考 点 整 合,2.圆锥曲线的标准方程,3.圆锥曲线的重要性质,4.弦长问题,(2)由x24y,知F(0,1),准线l:y1. 设点M(x0,y0),且x00,y00.,答案 (1)C (2)3,探究提高 1.凡涉及抛物线上的点到焦点距离,一般运用定义转化为到准线的距离处理.

    3、如本例(2)中充分运用抛物线定义实施转化,使解答简捷、明快. 2.求解圆锥曲线的标准方程的方法是“先定型,后计算”.所谓“定型”,就是指确定类型,所谓“计算”,就是指利用待定系数法求出方程中的a2,b2,p的值,最后代入写出椭圆、双曲线、抛物线的标准方程.,易知a2b2c29,,(2)设椭圆的右焦点为F(c,0),双曲线N的渐近线与椭圆M在第一象限内的交点为A,,b2c23a2c24a2b2, b2a2c2,(a2c2)c23a2c24a2(a2c2), 则4a48a2c2c40,e48e240,,(2)设A(x1,y1),B(x2,y2),,(2)直线MH与C除H以外没有其它公共点,理由如下

    4、:,代入y22px得y24ty4t20, 解得y1y22t, 即直线MH与C只有一个公共点, 所以除H以外,直线MH与C没有其它公共点.,探究提高 1.本题第(1)问求解的关键是求点N,H的坐标.而第(2)问的关键是将直线MH的方程与曲线C联立,根据方程组的解的个数进行判断. 2.判断直线与圆锥曲线的交点个数时,可直接求解相应方程组得到交点坐标,也可利用消元后的一元二次方程的判别式来确定,需注意利用判别式的前提是二次项系数不为0.并且解题时注意应用根与系数的关系及设而不求、整体代换的技巧.,【训练3】 (2018潍坊三模)已知M为圆O:x2y21上一动点,过点M作x轴,y轴的垂线,垂足分别为A

    5、,B,连接BA延长至点P,使得|PA|2,记点P的轨迹为曲线C.,由题意知OAMB为矩形,|AB|OM|1,,(2)设l1:ykxn,l与圆O相切,,由0,得n29k24,,(2)解 由题意得F(1,0).设P(x3,y3), 则(x31,y3)(x11,y1)(x21,y2)(0,0). 由(1)及题设得 x33(x1x2)1,y3(y1y2)2m0.,又由a2b2c2,可得2a3b.,(2)设点P的坐标为(x1,y1),点Q的坐标为(x2,y2). 由已知有y1y20,故|PQ|sinAOQy1y2.,易知直线AB的方程为xy20,,将等式两边平方,整理得56k250k110,,1.椭圆、双曲线的方程形式上可统一为Ax2By21,其中A,B是不等的常数,AB0时,表示焦点在y轴上的椭圆;BA0时,表示焦点在x轴上的椭圆;AB0时表示双曲线. 2.对涉及圆锥曲线上点到焦点距离或焦点弦问题,恰当选用定义解题,会效果明显,定义中的定值是标准方程的基础.,5.求中点弦的直线方程的常用方法,


    注意事项

    本文(2019高考数学二轮复习专题五解析几何第2讲椭圆、双曲线、抛物线课件.ppt)为本站会员(赵齐羽)主动上传,麦多课文档分享仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知麦多课文档分享(点击联系客服),我们立即给予删除!




    关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

    copyright@ 2008-2019 麦多课文库(www.mydoc123.com)网站版权所有
    备案/许可证编号:苏ICP备17064731号-1 

    收起
    展开