欢迎来到麦多课文档分享! | 帮助中心 海量文档,免费浏览,给你所需,享你所想!
麦多课文档分享
全部分类
  • 标准规范>
  • 教学课件>
  • 考试资料>
  • 办公文档>
  • 学术论文>
  • 行业资料>
  • 易语言源码>
  • ImageVerifierCode 换一换
    首页 麦多课文档分享 > 资源分类 > PPT文档下载
    分享到微信 分享到微博 分享到QQ空间

    2019高考数学一轮复习第八章立体几何8.3空间点、线、面的位置关系课件文.ppt

    • 资源ID:1155132       资源大小:455KB        全文页数:13页
    • 资源格式: PPT        下载积分:5000积分
    快捷下载 游客一键下载
    账号登录下载
    微信登录下载
    二维码
    微信扫一扫登录
    下载资源需要5000积分(如需开发票,请勿充值!)
    邮箱/手机:
    温馨提示:
    如需开发票,请勿充值!快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如需开发票,请勿充值!如填写123,账号就是123,密码也是123。
    支付方式: 支付宝扫码支付    微信扫码支付   
    验证码:   换一换

    加入VIP,交流精品资源
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    2019高考数学一轮复习第八章立体几何8.3空间点、线、面的位置关系课件文.ppt

    1、第八章 立体几何,高考文数,8.3 空间点、线、面的位置关系,知识清单,考点 空间点、线、面的位置关系1.平面的基本性质,2.点、线、面的位置关系 (1)空间两条直线的位置关系,(2)公理4:平行于同一条直线的两条直线互相平行. (3)等角定理:如果一个角的两边和另一个角的两边分别平行,那么这两 个角 相等或互补 . (4)两条异面直线所成的角 过空间任意一点分别引两条异面直线的平行直线,那么这两条相交直线,所成的锐角或直角叫做这两条异面直线所成的角,若记这个角为, 则 . 当两条异面直线所成的角为 时,这两条异面直线互相垂直. (5)直线与平面的位置关系,拓展延伸利用平移法求异面直线所成角的

    2、途径: 利用图中已有的平行线平移; 利用特殊点(线段的端点或中点)作平行线; 补形平移.,判断空间点、线、面位置关系的方法 在判断空间直线、平面的位置关系问题时,常采用画图法(尤其是画一 般长方体和正方体),实物判断法(如墙角等),定理性质证明法等.判断命 题真假时应注意命题等价性的转化,从而简化判断过程. 例1 (2017广东五校联考,14)已知m,n是两条不同的直线,、为两个不 同的平面,有下列四个命题: 若,m,n,则mn; 若m,n,mn,则; 若m,n,mn,则; 若m,n,则mn. 其中所有正确命题的序号是 .,方法技巧,解题导引 依据点、线、面位置关系的判定逐项判断 得到正确命题

    3、 的序号 结论,解析 对于,当两个平面互相垂直时,分别位于这两个平面内的两条 直线未必垂直,因此不正确.对于,依据结论“由空间一点向一个二 面角的两个半平面(或半平面所在平面)引垂线,这两条垂线的夹角与这 个二面角的平面角相等或互补”可知正确.对于,分别与两条平行 直线平行的两个平面未必平行,因此不正确.对于,由n得在平面 内必存在直线n1平行于直线n;由m,得m,则mn1;又n1n,因 此有mn,正确.综上所述,所有正确命题的序号是.,答案 ,方法点拨 在解决此类问题时,可借助特殊几何体,如正方体、正三棱 锥等来帮助思考.,例2 (2017河北邯郸调研,5)如图,在三棱锥S-ABC中,G1,

    4、G2分别是SAB 和SAC的重心,则直线G1G2与BC的位置关系是 ( B )A.相交 B.平行 C.异面 D.以上都有可能,解题导引 连SG1交AB于M,连SG2交AC于N,连MN 利用重心的性质得M、N 分别为AB与AC的中点 得G1G2MN,MNBC 由公理4得G1G2BC,解析 连接SG1并延长交AB于M,连接SG2并延长交AC于N,连接MN.由题 意知SM为SAB的中线,且SG1= SM,SN为SAC的中线,且SG2= SN, 在SMN中, = ,G1G2MN. 易知MN是ABC的中位线,MNBC, 因此可得G1G2BC,即直线G1G2与BC的位置关系是平行.故选B.,证明点共线、线

    5、共点及点线共面的方法 1.证明点线共面问题的两种方法:(1)归一法:首先由所给条件中的部分 线(或点)确定一个平面,然后再证其余的线(或点)在这个平面内;(2)重合 法:将所有条件分为两部分,然后分别确定平面,再证两平面重合. 2.证明点共线问题的两种方法:(1)先由两点确定一条直线,再证其他各 点都在这条直线上;(2)直接证明这些点都在同一条特定直线上. 3.证明线共点问题的常用方法是:先证其中两条直线交于一点,再证其他 直线经过该点.,求证:(1)E、C、D1、F四点共面; (2)CE、D1F、DA三线共点.,例3 如图,在正方体ABCD-A1B1C1D1中,E为AB的中点,F为AA的中点.,证明 (1)如图,分别连接EF、A1B、D1C.E、F分别是AB、AA1的中点,EFA1B,EF= A1B. 又A1D1BC,四边形A1D1CB是平行四边形. A1BCD1,EFCD1. EF与CD1确定一个平面. E、F、C、D1,故E、C、D1、F四点共面. (2)由(1)知EFCD1,且EF= CD1, 四边形CD1FE为梯形, CE与D1F相交,设交点为P(如图所示), PCE,CE面ABCD,P面ABCD, 同理,P面A1ADD1. 又面A1ADD1面ADCB=AD,PAD, 故CE、D1F、DA三线共点.,


    注意事项

    本文(2019高考数学一轮复习第八章立体几何8.3空间点、线、面的位置关系课件文.ppt)为本站会员(jobexamine331)主动上传,麦多课文档分享仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知麦多课文档分享(点击联系客服),我们立即给予删除!




    关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

    copyright@ 2008-2019 麦多课文库(www.mydoc123.com)网站版权所有
    备案/许可证编号:苏ICP备17064731号-1 

    收起
    展开