欢迎来到麦多课文档分享! | 帮助中心 海量文档,免费浏览,给你所需,享你所想!
麦多课文档分享
全部分类
  • 标准规范>
  • 教学课件>
  • 考试资料>
  • 办公文档>
  • 学术论文>
  • 行业资料>
  • 易语言源码>
  • ImageVerifierCode 换一换
    首页 麦多课文档分享 > 资源分类 > PPT文档下载
    分享到微信 分享到微博 分享到QQ空间

    2019年高考数学二轮复习专题六直线、圆、圆锥曲线6.1直线与圆课件文.ppt

    • 资源ID:1153508       资源大小:1.23MB        全文页数:26页
    • 资源格式: PPT        下载积分:5000积分
    快捷下载 游客一键下载
    账号登录下载
    微信登录下载
    二维码
    微信扫一扫登录
    下载资源需要5000积分(如需开发票,请勿充值!)
    邮箱/手机:
    温馨提示:
    如需开发票,请勿充值!快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如需开发票,请勿充值!如填写123,账号就是123,密码也是123。
    支付方式: 支付宝扫码支付    微信扫码支付   
    验证码:   换一换

    加入VIP,交流精品资源
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    2019年高考数学二轮复习专题六直线、圆、圆锥曲线6.1直线与圆课件文.ppt

    1、专题六 直线、圆、圆锥曲线,6.1 直线与圆,-3-,-4-,命题热点一,命题热点二,命题热点三,命题热点四,直线方程的应用 【思考】 在利用已知条件设直线方程时,应注意些什么?求直线方程的基本方法是什么?,例1若一条光线从点(-2,-3)射出,经y轴反射后与圆(x+3)2+(y-2)2=1相切,则反射光线所在直线的斜率为( ),答案,解析,-5-,命题热点一,命题热点二,命题热点三,命题热点四,题后反思1.在设直线的截距式解题时,要注意防止由于“零截距”而造成丢解的情况. 2.在设直线的点斜式、斜截式解题时,要注意检验斜率不存在的情况,防止丢解. 3.求直线方程的主要方法是待定系数法.在使用

    2、待定系数法求直线方程时,要注意方程的选择、分类讨论思想的应用.,-6-,命题热点一,命题热点二,命题热点三,命题热点四,对点训练1圆x2+y2-2x-8y+13=0的圆心到直线ax+y-1=0的距离为1,则a=( ),A,解析 由x2+y2-2x-8y+13=0, 得(x-1)2+(y-4)2=4, 所以圆心坐标为(1,4). 因为圆x2+y2-2x-8y+13=0的圆心到直线ax+y-1=0的距离为1,-7-,命题热点一,命题热点二,命题热点三,命题热点四,圆的方程及其应用 【思考】 圆的方程有几种不同形式?求圆的方程的基本方法有哪些? 例2设抛物线y2=4x的焦点为F,准线为l,已知点C在

    3、l上,以C为圆心的圆与y轴的正半轴相切于点A,若FAC=120,则圆的方程为 .,解析 抛物线y2=4x的焦点F(1,0),准线l的方程为x=-1. 由题意可设圆C的方程为(x+1)2+(y-b)2=1(b0),则C(-1,b),A(0,b). FAC=120,-8-,命题热点一,命题热点二,命题热点三,命题热点四,题后反思1.圆的三种方程: (1)圆的标准方程,(x-a)2+(y-b)2=r2. (2)圆的一般方程,x2+y2+Dx+Ey+F=0(D2+E2-4F0). (3)圆的直径式方程,(x-x1)(x-x2)+(y-y1)(y-y2)=0(圆的直径的两端点是A(x1,y1),B(x2

    4、,y2). 2.求圆的方程一般有两类方法: (1)几何法,通过圆的性质、直线与圆、圆与圆的位置关系,求得圆的基本量和方程; (2)代数法,即用待定系数法先设出圆的方程,再由条件求得各系数.,-9-,命题热点一,命题热点二,命题热点三,命题热点四,对点训练2(2018天津,文12)在平面直角坐标系中,经过三点(0,0), (1,1),(2,0)的圆的方程为 .,答案 x2+y2-2x=0 解析 设点O,A,B的坐标分别为(0,0),(1,1),(2,0),则AO=AB,所以点A在线段OB的垂直平分线上.又因为OB为该圆的一条弦,所以圆心在线段OB的垂直平分线上,可设圆心坐标为(1,y),所以(y

    5、-1)2=1+y2,解得y=0,所以该圆的半径为1,其方程为(x-1)2+y2=1,即x2+y2-2x=0.,-10-,命题热点一,命题热点二,命题热点三,命题热点四,直线与圆、圆与圆的位置关系 【思考】 如何判断直线与圆、圆与圆的位置关系? 例3(1)平行于直线2x+y+1=0且与圆x2+y2=5相切的直线的方程是( ),答案,解析,-11-,命题热点一,命题热点二,命题热点三,命题热点四,答案,解析,(2)设A(1,0),B(0,1),直线l:y=ax,C:(x-a)2+y2=1.若C既与线段AB有公共点,又与直线l有公共点,则实数a的取值范围是 .,-12-,命题热点一,命题热点二,命题

    6、热点三,命题热点四,题后反思1.判定直线与圆的位置关系的两种方法: (1)代数方法(判断直线与圆方程联立所得方程组的解的情况),0相交,r相离,d=r相切.判定圆与圆的位置关系与判定直线与圆的位置关系类似. 2.讨论直线与圆及圆与圆的位置关系时,要注意数形结合,充分利用圆的几何性质寻找解题途径,减少运算量.,-13-,命题热点一,命题热点二,命题热点三,命题热点四,对点训练3直线l:y=kx+1与圆O:x2+y2=1相交于A,B两点,则“k=1”是“OAB的面积为 ”的( ) A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分也不必要条件,答案 A,-14-,命题热点一,命题热

    7、点二,命题热点三,命题热点四,与圆有关的轨迹问题 【思考】 求轨迹方程常用的方法有哪些?,例4已知点P(2,2),C:x2+y2-8y=0,过点P的动直线l与C交于A,B两点,线段AB的中点为M,O为坐标原点. (1)求M的轨迹方程; (2)当|OP|=|OM|时,求l的方程及POM的面积.,解 (1)C的方程可化为x2+(y-4)2=16,则圆心为C(0,4),半径为4.,即(x-1)2+(y-3)2=2. 因为点P在C的内部, 所以点M的轨迹方程是(x-1)2+(y-3)2=2.,-15-,命题热点一,命题热点二,命题热点三,命题热点四,-16-,命题热点一,命题热点二,命题热点三,命题热

    8、点四,题后反思1.求轨迹方程常用的方法有直接法、定义法、相关点法(坐标代入法)等,解决此类问题时要读懂题目给出的条件,进行合理转化,准确得出结论. 2.涉及直线与圆的位置关系时,应多考虑圆的几何性质,利用几何法进行运算求解往往会减少运算量.,-17-,命题热点一,命题热点二,命题热点三,命题热点四,对点训练4已知过原点的动直线l与C1:x2+y2-6x+5=0相交于不同的两点A,B. (1)求C1的圆心坐标; (2)求线段AB的中点M的轨迹C的方程; (3)是否存在实数k,使得直线L:y=k(x-4)与曲线C只有一个交点?若存在,求出k的取值范围;若不存在,说明理由.,解 (1)C1:x2+y

    9、2-6x+5=0可化为(x-3)2+y2=4,所以C1的圆心坐标为(3,0). (2)设线段AB的中点M(x,y), 由弦的性质可知C1MAB,即C1MOM. 故点M的轨迹是以OC1为直径的圆,-18-,命题热点一,命题热点二,命题热点三,命题热点四,-19-,命题热点一,命题热点二,命题热点三,命题热点四,-20-,命题热点一,命题热点二,命题热点三,命题热点四,-21-,规律总结,拓展演练,1.要注意几种直线方程的局限性,点斜式、斜截式要求直线不能与x轴垂直,两点式要求直线不能与坐标轴垂直,而截距式方程不能表示过原点的直线,也不能表示垂直于坐标轴的直线. 2.求解与两条直线平行或垂直有关的

    10、问题时,主要是利用两条直线平行或垂直的充要条件,即若斜率存在时,“斜率相等”或“互为负倒数”;若出现斜率不存在的情况,可考虑用数形结合的方法去研究. 3.直线与圆的位置关系:研究直线与圆的位置关系主要通过圆心到直线的距离和半径的比较来实现,两个圆的位置关系判断依据两个圆心距离与半径差与和的比较. 4.处理有关圆的问题,要特别注意圆心、半径及平面几何知识的应用,如经常用到弦心距、半径、弦长的一半构成的直角三角形,利用圆的一些特殊几何性质解题,往往使问题简化.,-22-,规律总结,拓展演练,1.已知直线3x+4y=b与圆x2+y2-2x-2y+1=0相切,则b的值是( ) A.-2或12 B.2或

    11、-12 C.-2或-12 D.2或12,D,解析 由题意,知圆的标准方程为(x-1)2+(y-1)2=1,其圆心为(1,1),半径为1,则圆心到直线3x+4y=b的距离d= =1,所以b=2或b=12.,-23-,规律总结,拓展演练,2.已知点P在圆x2+y2=1上,点A的坐标为(-2,0),O为原点,则 的最大值为 .,6,-24-,规律总结,拓展演练,3.已知圆C的圆心在x轴的正半轴上,点M(0, )在圆C上,且圆心到直线2x-y=0的距离为 ,则圆C的方程为 .,(x-2)2+y2=9,-25-,规律总结,拓展演练,4.在平面直角坐标系xOy中,曲线y=x2-6x+1与坐标轴的交点都在C上. (1)求C的方程; (2)若C与直线x-y+a=0交于A,B两点,且OAOB,求a的值.,-26-,规律总结,拓展演练,


    注意事项

    本文(2019年高考数学二轮复习专题六直线、圆、圆锥曲线6.1直线与圆课件文.ppt)为本站会员(赵齐羽)主动上传,麦多课文档分享仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知麦多课文档分享(点击联系客服),我们立即给予删除!




    关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

    copyright@ 2008-2019 麦多课文库(www.mydoc123.com)网站版权所有
    备案/许可证编号:苏ICP备17064731号-1 

    收起
    展开