欢迎来到麦多课文档分享! | 帮助中心 海量文档,免费浏览,给你所需,享你所想!
麦多课文档分享
全部分类
  • 标准规范>
  • 教学课件>
  • 考试资料>
  • 办公文档>
  • 学术论文>
  • 行业资料>
  • 易语言源码>
  • ImageVerifierCode 换一换
    首页 麦多课文档分享 > 资源分类 > PPT文档下载
    分享到微信 分享到微博 分享到QQ空间

    2019年高考数学二轮复习专题九选做大题9.2不等式选讲课件文.ppt

    • 资源ID:1153491       资源大小:1,017.50KB        全文页数:34页
    • 资源格式: PPT        下载积分:5000积分
    快捷下载 游客一键下载
    账号登录下载
    微信登录下载
    二维码
    微信扫一扫登录
    下载资源需要5000积分(如需开发票,请勿充值!)
    邮箱/手机:
    温馨提示:
    如需开发票,请勿充值!快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如需开发票,请勿充值!如填写123,账号就是123,密码也是123。
    支付方式: 支付宝扫码支付    微信扫码支付   
    验证码:   换一换

    加入VIP,交流精品资源
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    2019年高考数学二轮复习专题九选做大题9.2不等式选讲课件文.ppt

    1、9.2 不等式选讲(选修45),-2-,-3-,-4-,-5-,-6-,1.绝对值三角不等式 (1)定理1:若a,b是实数,则|a+b|a|+|b|,当且仅当ab0时,等号成立; (2)性质:|a|-|b|ab|a|+|b|; (3)定理2:若a,b,c是实数,则|a-c|a-b|+|b-c|,当且仅当(a-b)(b-c) 0时,等号成立.,-7-,2.绝对值不等式的解法 (1)含绝对值的不等式|x|a(a0)的解法: |x|axa或x0)和|ax+b|c(c0)型不等式的解法: |ax+b|c-cax+bc; |ax+b|cax+bc或ax+b-c. (3)|x-a|+|x-b|c(c0)和

    2、|x-a|+|x-b|c(c0)型不等式的解法: 利用绝对值不等式的几何意义求解,体现了数形结合的思想; 利用“零点分段法”求解,体现了分类讨论的思想. 通过构造函数,利用函数的图象求解,体现了函数与方程的思想.,-8-,-9-,4.不等式的证明方法 证明不等式常用的方法有比较法、综合法、分析法、反证法、放缩法等. (1)比较法:求差比较法,求商比较法. 求差比较法:由于aba-b0,ab,只要证明a-b0即可. 求商比较法:由ab0 1且a0,b0,因此当a0,b0时要证明ab,只要证明 1即可. (2)分析法:从待证不等式出发,逐步寻求使它成立的充分条件,直到将待证不等式归结为一个已成立的

    3、不等式(已知条件、定理等). (3)综合法:从已知条件出发,利用不等式的有关性质或定理,经过推理论证,推导出所要证明的不等式成立,即“由因寻果”的方法,这种证明不等式的方法称为综合法.,-10-,-11-,考向一,考向二,考向三,考向四,解绝对值不等式、求参数范围 解题策略一 分离参数法求参数范围 例1已知函数f(x)=|x+1|-|x-2|. (1)求不等式f(x)1的解集; (2)若不等式f(x)x2-x+m的解集非空,求m的取值范围.,-12-,考向一,考向二,考向三,考向四,-13-,考向一,考向二,考向三,考向四,解题心得1.解含有两个以上绝对值符号的不等式,一般解法是零点分段法.即

    4、令各个绝对值式子等于0,求出各自零点,把零点在数轴上从小到大排列,然后按零点分数轴形成的各区间去绝对值,进而将绝对值不等式转化为常规不等式. 2.在不等式恒成立的情况下,求参数的取值范围,可以采取分离参数,通过求对应函数最值的方法获得.,-14-,考向一,考向二,考向三,考向四,对点训练1已知函数f(x)=|x+m|+|2x-1|(m0). (1)当m=1时,解不等式f(x)3; (2)当xm,2m2时,不等式 f(x)|x+1|恒成立,求实数m的取值范围.,-15-,考向一,考向二,考向三,考向四,-16-,考向一,考向二,考向三,考向四,解题策略二 求函数最值构造不等式求参数范围 例2已知

    5、函数f(x)=-x2+ax+4,g(x)=|x+1|+|x-1|. (1)当a=1时,求不等式f(x)g(x)的解集; (2)若不等式f(x)g(x)的解集包含-1,1,求a的取值范围.,-17-,考向一,考向二,考向三,考向四,解 (1)当a=1时,不等式f(x)g(x)等价于x2-x+|x+1|+|x-1|-40. 当x-1时,式化为x2-3x-40,无解; 当-1x1时,式化为x2-x-20,从而-1x1;,(2)当x-1,1时,g(x)=2. 所以f(x)g(x)的解集包含-1,1,等价于当x-1,1时f(x)2. 又f(x)在-1,1的最小值必为f(-1)与f(1)之一, 所以f(-

    6、1)2且f(1)2,得-1a1. 所以a的取值范围为-1,1.,-18-,考向一,考向二,考向三,考向四,解题心得1.对于求参数范围问题,可将已知条件进行等价转化,得到含有参数的不等式恒成立,此时通过求函数的最值得到关于参数的不等式,解不等式得参数范围. 2.解答此类问题应熟记以下转化:f(x)a恒成立f(x)mina;f(x)a有解f(x)maxa;f(x)a无解f(x)maxa;f(x)a无解f(x)mina.,-19-,考向一,考向二,考向三,考向四,对点训练2已知函数f(x)=|2x-1|+|2x+a|,g(x)=x+3. (1)当a=-2时,求不等式f(x)-1,且当 时,f(x)g

    7、(x),求a的取值范围.,-20-,考向一,考向二,考向三,考向四,-21-,考向一,考向二,考向三,考向四,不等式的证明 例3已知a0,b0,a3+b3=2.证明: (1)(a+b)(a5+b5)4; (2)a+b2.,证明 (1)(a+b)(a5+b5)=a6+ab5+a5b+b6 =(a3+b3)2-2a3b3+ab(a4+b4)=4+ab(a2-b2)24. (2)因为(a+b)3=a3+3a2b+3ab2+b3,-22-,考向一,考向二,考向三,考向四,解题心得不等式证明的常用方法是:比较法、综合法与分析法.其中运用综合法证明不等式时,主要是运用基本不等式证明,与绝对值有关的不等式证

    8、明常用绝对值三角不等式.证明过程中一方面要注意不等式成立的条件,另一方面要善于对式子进行恰当的转化、变形.,-23-,考向一,考向二,考向三,考向四,-24-,考向一,考向二,考向三,考向四,-25-,考向一,考向二,考向三,考向四,求最值 解题策略一 利用基本不等式求最值 例4若a0,b0,且 (1)求a3+b3的最小值. (2)是否存在a,b,使得2a+3b=6?并说明理由.,-26-,考向一,考向二,考向三,考向四,解题心得若题设条件有(或者经过化简题设条件得到)两个正数和或两个正数积为定值,则可利用基本不等式求两个正数积的最大值或两个正数和的最小值.,-27-,考向一,考向二,考向三,

    9、考向四,对点训练4已知a0,b0,函数f(x)=|x+a|+|2x-b|的最小值为1. (1)求证:2a+b=2; (2)若a+2btab恒成立,求实数t的最大值.,-28-,考向一,考向二,考向三,考向四,-29-,考向一,考向二,考向三,考向四,解题策略二 利用柯西不等式求最值,-30-,考向一,考向二,考向三,考向四,解题心得利用柯西不等式求最值时,一定要满足柯西不等式的形式.,-31-,考向一,考向二,考向三,考向四,对点训练5(1)已知关于x的不等式|x+3|+|x+m|2m的解集为R.求m的最大值. (2)已知a0,b0,c0,且a+b+c=1,求2a2+3b2+4c2的最小值及此

    10、时a,b,c的值.,解 (1)|x+3|+|x+m|(x+3)-(x+m)|=|m-3|. 当-3x-m或-mx-3时取等号,令|m-3|2m, m-32m或m-3-2m.解得m1,m的最大值为1.,-32-,考向一,考向二,考向三,考向四,绝对值三角不等式的应用 例6设函数 (1)证明f(x)2; (2)若f(3)5,求a的取值范围.,-33-,考向一,考向二,考向三,考向四,解题心得绝对值三角不等式、基本不等式在解决多变量代数式的最值问题中有着重要的应用,无论运用绝对值三角不等式还是运用基本不等式时应注意等号成立的条件.,-34-,考向一,考向二,考向三,考向四,对点训练6(2018全国,文23)设函数f(x)=5-|x+a|-|x-2|. (1)当a=1时,求不等式f(x)0的解集; (2)若f(x)1,求a的取值范围.,可得f(x)0的解集为x|-2x3. (2)f(x)1等价于|x+a|+|x-2|4. 而|x+a|+|x-2|a+2|,且当x=2时等号成立. 故f(x)1等价于|a+2|4. 由|a+2|4可得a-6或a2.所以a的取值范围是(-,-62,+).,


    注意事项

    本文(2019年高考数学二轮复习专题九选做大题9.2不等式选讲课件文.ppt)为本站会员(wealthynice100)主动上传,麦多课文档分享仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知麦多课文档分享(点击联系客服),我们立即给予删除!




    关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

    copyright@ 2008-2019 麦多课文库(www.mydoc123.com)网站版权所有
    备案/许可证编号:苏ICP备17064731号-1 

    收起
    展开