欢迎来到麦多课文档分享! | 帮助中心 海量文档,免费浏览,给你所需,享你所想!
麦多课文档分享
全部分类
  • 标准规范>
  • 教学课件>
  • 考试资料>
  • 办公文档>
  • 学术论文>
  • 行业资料>
  • 易语言源码>
  • ImageVerifierCode 换一换
    首页 麦多课文档分享 > 资源分类 > PPT文档下载
    分享到微信 分享到微博 分享到QQ空间

    2018版高中数学第二章概率2.3.1条件概率课件苏教版选修2_3.ppt

    • 资源ID:1150842       资源大小:1.26MB        全文页数:36页
    • 资源格式: PPT        下载积分:5000积分
    快捷下载 游客一键下载
    账号登录下载
    微信登录下载
    二维码
    微信扫一扫登录
    下载资源需要5000积分(如需开发票,请勿充值!)
    邮箱/手机:
    温馨提示:
    如需开发票,请勿充值!快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如需开发票,请勿充值!如填写123,账号就是123,密码也是123。
    支付方式: 支付宝扫码支付    微信扫码支付   
    验证码:   换一换

    加入VIP,交流精品资源
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    2018版高中数学第二章概率2.3.1条件概率课件苏教版选修2_3.ppt

    1、2.3.1 条件概率,第2章 2.3 独立性,学习目标 1.理解条件概率的定义. 2.掌握条件概率的计算方法. 3.能利用条件概率公式解决一些简单的实际问题.,题型探究,问题导学,内容索引,当堂训练,问题导学,知识点一 条件概率,100件产品中有93件产品的长度合格,90件产品的质量合格,85件产品的长度、质量都合格. 令A产品的长度合格,B产品的质量合格,AB产品的长度、质量都合格.,思考1,试求P(A)、P(B)、P(AB).,答案,思考2,任取一件产品,已知其质量合格(即B发生),求它的长度(即A发生)也合格(记为A|B)的概率.,答案,答案 事件A|B发生,相当于从90件质量合格的产品

    2、中任取1件长度合格,其概率为P(A|B),思考3,P(B)、P(AB)、P(A|B)间有怎样的关系.,答案,(1)条件概率的概念 一般地,对于两个事件A和B,在已知 发生的条件下 发生的概率,称为事件B发生的条件下事件A的条件概率,记为 . (2)条件概率的计算公式 一般地,若P(B)0,则事件B发生的条件下A发生的条件概率是P(A|B) . 利用条件概率,有P(AB) .,梳理,事件B,事件A,P(A|B),P(A|B)P(B),知识点二 条件概率的性质,1.任何事件的条件概率都在 之间,即 . 2.如果B和C是两个互斥的事件,则 P(BC|A) .,0和1,0P(B|A)1,P(B|A)P

    3、(C|A),题型探究,命题角度1 利用定义求条件概率 例1 某个班级共有学生40人,其中团员有15人.全班分成四个小组,第一小组有学生10人,其中团员有4人.如果要在班内任选1人当学生代表, (1)求这个代表恰好在第一小组的概率;,解 设A在班内任选1名学生,该学生属于第一小组,B在班内任选1名学生,该学生是团员.,解答,类型一 求条件概率,(2)求这个代表恰好是团员代表的概率;,解答,(3)求这个代表恰好是第一小组团员的概率;,(4)现在要在班内任选1个团员代表,问这个代表恰好在第一小组的概率.,解答,用定义法求条件概率P(B|A)的步骤 (1)分析题意,弄清概率模型. (2)计算P(A),

    4、P(AB). (3)代入公式求P(B|A),反思与感悟,跟踪训练1 从1,2,3,4,5中任取2个不同的数,记事件A“取到的2个数之和为偶数”,事件B“取到的2个数均为偶数”,则P(B|A)_.,答案,解析,命题角度2 缩小基本事件范围求条件概率 例2 集合A1,2,3,4,5,6,甲、乙两人各从A中任取一个数,若甲先取(不放回),乙后取,在甲抽到奇数的条件下,求乙抽到的数比甲抽到的数大的概率.,解 将甲抽到数字a,乙抽到数字b,记作(a,b),甲抽到奇数的情形有(1,2),(1,3),(1,4),(1,5),(1,6),(3,1),(3,2),(3,4),(3,5),(3,6),(5,1),

    5、(5,2),(5,3),(5,4),(5,6),共15个. 在这15个中,乙抽到的数比甲抽到的数大的有(1,2),(1,3),(1,4),(1,5),(1,6),(3,4),(3,5),(3,6),(5,6),共9个,所以所求概率,解答,引申探究 1.在本例条件下,求乙抽到偶数的概率.,解答,解 在甲抽到奇数的情形中,乙抽到偶数的有(1,2),(1,4),(1,6),(3,2),(3,4),(3,6),(5,2),(5,4),(5,6),共9个, 所以所求概率,2.若甲先取(放回),乙后取,若事件A:“甲抽到的数大于4”;事件B:“甲、乙抽到的两数之和等于7”,求P(B|A).,解答,解 甲抽

    6、到的数大于4的情形有(5,1),(5,2),(5,3),(5,4),(5,5),(5,6),(6,1),(6,2),(6,3),(6,4),(6,5),(6,6),共12个,其中甲、乙抽到的两数之和等于7的情形有(5,2),(6,1),共2个.,将原来的基本事件全体缩小为已知的条件事件A,原来的事件B缩小为AB.而A中仅包含有限个基本事件,每个基本事件发生的概率相等,从而可以在缩小的概率空间上利用古典概型公式计算条件概率,即P(B|A)这里n(A)和n(AB)的计数是基于缩小的基本事件范围的.,反思与感悟,跟踪训练2 现有6个节目准备参加比赛,其中4个舞蹈节目,2个语言类节目,如果不放回地依次

    7、抽取2个节目,求:在第1次抽到舞蹈节目的条件下,第2次抽到舞蹈节目的概率.,解答,解 设第1次抽到舞蹈节目为事件A,第2次抽到舞蹈节目为事件B,则第1次和第2次都抽到舞蹈节目为事件AB.根据分步计数原理得,例3 把外形相同的球分装在三个盒子中,每盒10个.其中,第一个盒子中有7个球标有字母A,3个球标有字母B;第二个盒子中有红球和白球各5个;第三个盒子中有红球8个,白球2个.试验按如下规则进行:先在第一个盒子中任取一个球,若取得标有字母A的球,则在第二个盒子中任取一个球;若第一次取得标有字母B的球,则在第三个盒子中任取一个球.如果第二次取出的球是红球,则称试验成功,求试验成功的概率.,类型二

    8、条件概率的综合应用,解答,解 设A从第一个盒子中取得标有字母A的球, B从第一个盒子中取得标有字母B的球, R第二次取出的球是红球, W第二次取出的球是白球,,事件“试验成功”表示为ARBR, 又事件AR与事件BR互斥,故由概率的加法公式,得 P(ARBR)P(AR)P(BR) P(R|A)P(A)P(R|B)P(B),当所求事件的概率相对较复杂时,往往把该事件分成两个(或多个)互不相容的较简单的事件之和,求出这些简单事件的概率,再利用P(BC|A)P(B|A)P(C|A)便可求得较复杂事件的概率.,反思与感悟,跟踪训练3 1号箱中有2个白球和4个红球,2号箱中有5个白球和3个红球,现随机地从

    9、1号箱中取出一球放入2号箱,然后从2号箱中随机取出一球,则从2号箱中取出红球的概率是多少?,解 记事件A“最后从2号箱中取出的球是红球”, 事件B“从1号箱中取出的球是红球”,,解答,当堂训练,答案,2,3,4,5,1,解析,2.市场上供应的灯泡中,甲厂产品占70%,乙厂产品占30%,甲厂产品的合格率是95%,乙厂产品的合格率是80%,则从市场上买到的一个甲厂的合格灯泡的概率是_.,答案,2,3,4,5,1,解析,解析 记事件A为“甲厂产品”,事件B为“合格产品”, 则P(A)0.7,P(B|A)0.95, P(AB)P(A)P(B|A)0.70.950.665.,0.665,3.盒中装有6件

    10、产品,其中4件一等品,2件二等品,从中不放回地取两次,每次取1件,已知第二次取得一等品,则第一次取得的是二等品的概率为_.,答案,2,3,4,5,1,解析,解析 设“第二次取得一等品”为事件A,“第一次取得二等品”为事件B,,4.假定生男、生女是等可能的,一个家庭中有两个小孩,已知有一个是女孩,则另一个小孩是男孩的概率是_.,答案,2,3,4,5,1,解析,解析 一个家庭的两个小孩只有4种可能:男,男,男,女,女,男,女,女,由题意可知这4个基本事件的发生是等可能的,所求概率P,5.抛掷红、蓝两颗骰子,记事件A为“蓝色骰子的点数为4或6”,事件B为“两颗骰子的点数之和大于8”,求: (1)事件

    11、A发生的条件下事件B发生的概率;,解答,2,3,4,5,1,解 抛掷红、蓝两颗骰子,事件总数为6636,,2,3,4,5,1,由于366345548,4664558,56658,668, 所以事件B的基本事件数为432110,,事件AB的基本事件数为6,,由条件概率公式,得,(2)事件B发生的条件下事件A发生的概率.,解答,2,3,4,5,1,规律与方法,1.P(A|B)表示事件A在“事件B已发生”这个附加条件下的概率,与没有这个附加条件的概率是不同的.也就是说,条件概率是在原随机试验的条件上再加上一定的条件,求另一事件在此“新条件”下发生的概率. 2.若事件A,C互斥,则PAC|BP(A|B)P(C|B).,本课结束,


    注意事项

    本文(2018版高中数学第二章概率2.3.1条件概率课件苏教版选修2_3.ppt)为本站会员(terrorscript155)主动上传,麦多课文档分享仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知麦多课文档分享(点击联系客服),我们立即给予删除!




    关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

    copyright@ 2008-2019 麦多课文库(www.mydoc123.com)网站版权所有
    备案/许可证编号:苏ICP备17064731号-1 

    收起
    展开