欢迎来到麦多课文档分享! | 帮助中心 海量文档,免费浏览,给你所需,享你所想!
麦多课文档分享
全部分类
  • 标准规范>
  • 教学课件>
  • 考试资料>
  • 办公文档>
  • 学术论文>
  • 行业资料>
  • 易语言源码>
  • ImageVerifierCode 换一换
    首页 麦多课文档分享 > 资源分类 > PPT文档下载
    分享到微信 分享到微博 分享到QQ空间

    2018年高中数学第一章导数及其应用1.4.1曲边梯形的面积与定积分课件9新人教B版选修2_2.ppt

    • 资源ID:1150238       资源大小:2.90MB        全文页数:43页
    • 资源格式: PPT        下载积分:5000积分
    快捷下载 游客一键下载
    账号登录下载
    微信登录下载
    二维码
    微信扫一扫登录
    下载资源需要5000积分(如需开发票,请勿充值!)
    邮箱/手机:
    温馨提示:
    如需开发票,请勿充值!快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如需开发票,请勿充值!如填写123,账号就是123,密码也是123。
    支付方式: 支付宝扫码支付    微信扫码支付   
    验证码:   换一换

    加入VIP,交流精品资源
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    2018年高中数学第一章导数及其应用1.4.1曲边梯形的面积与定积分课件9新人教B版选修2_2.ppt

    1、,曲边梯形面积与定积分,教学目标: (1)体会“无限分割思想”求曲边梯形的面积 (2)理解定积分的概念以及它的几何意义;,重点:定积分的概念以及它的几何意义; 难点:如何把曲线围成区域的面积转化成矩形面积的和。,微积分简单粗暴版定义,微分:无限细分,以至于每一份 都无限微小 积分:把微小的积累为一个大的,三国时期的刘徽(约公元225年295年),形容他的“割圆术”说:割之弥细,所失弥少,割之又割,以至于不可割,则与圆合体,而无所失矣。“割圆术”,是以“圆内接正多边形的面积”, 来无限逼近“圆面积”。,微积分的基础理论:极限思想,前面学习的导数是微分的一部分 今天我们开始学习积分的初步:定积分,

    2、定积分的实际背景,曲边(直角)梯形的概念:,2019/5/12,例1、求由曲线yx2和直线x1,y0围成的图形面积,教材上统一取了每个区间左端点的高度作为每个矩形的高,现在同学们再试一下取右边端点的高度作为每个矩形的高,所有这些小矩形的面积和记为An,再研究 时,An是否还是趋近于曲边三角形的面积?,定积分的实际背景1曲边梯形面积,观察下列演示过程,注意当分割加细时, 矩形面积和与曲边梯形面积的关系,当区间无穷小时,区间上函数值 几乎一样,所以取小区间内哪个点 的高: 为小矩形的高都可以。,例2、某物体做自由落体运动 速度v=10t,求2秒内物体运动路程,定积分的实际背景3变速直线运动的路程,

    3、定积分的实际背景2变力做功,思考:,求曲边梯形的面积,求变力做功,求变速直线运动的路程的步骤,它们有什么共同点? 三个问题均可通过“分割、近似代替、求和、取极限”解决 都可以归结为一个特定形式和的极限 牛顿等数学教得到了解决这一类问题的一般方法: 求函数定积分,定积分的概念.,积分上限,用定积分改写例1的结果为:,用定积分改写例3的结果为:,利用定义求定积分步骤:,牛刀小试,2019/5/12,2019/5/12,2019/5/12,本节重点内容:定积分的几何意义,思考1:,1、,2、把下面的面积写成定积分的形式:,如果被积函数是负的,函数曲线在x轴之下,定积分的值与曲边梯形的面积的关系是什么?,思考2:,总结:,思考3:,0,利用积分的几意义求定积分,当堂检测:,


    注意事项

    本文(2018年高中数学第一章导数及其应用1.4.1曲边梯形的面积与定积分课件9新人教B版选修2_2.ppt)为本站会员(unhappyhay135)主动上传,麦多课文档分享仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知麦多课文档分享(点击联系客服),我们立即给予删除!




    关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

    copyright@ 2008-2019 麦多课文库(www.mydoc123.com)网站版权所有
    备案/许可证编号:苏ICP备17064731号-1 

    收起
    展开