欢迎来到麦多课文档分享! | 帮助中心 海量文档,免费浏览,给你所需,享你所想!
麦多课文档分享
全部分类
  • 标准规范>
  • 教学课件>
  • 考试资料>
  • 办公文档>
  • 学术论文>
  • 行业资料>
  • 易语言源码>
  • ImageVerifierCode 换一换
    首页 麦多课文档分享 > 资源分类 > PPT文档下载
    分享到微信 分享到微博 分享到QQ空间

    2018年高中数学第3章空间向量与立体几何3.1.2共面向量定理课件5苏教版选修2_1.ppt

    • 资源ID:1150125       资源大小:1.89MB        全文页数:11页
    • 资源格式: PPT        下载积分:5000积分
    快捷下载 游客一键下载
    账号登录下载
    微信登录下载
    二维码
    微信扫一扫登录
    下载资源需要5000积分(如需开发票,请勿充值!)
    邮箱/手机:
    温馨提示:
    如需开发票,请勿充值!快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如需开发票,请勿充值!如填写123,账号就是123,密码也是123。
    支付方式: 支付宝扫码支付    微信扫码支付   
    验证码:   换一换

    加入VIP,交流精品资源
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    2018年高中数学第3章空间向量与立体几何3.1.2共面向量定理课件5苏教版选修2_1.ppt

    1、3.1.2 共面向量定理,复 习,1 向量的共线定理 2 平面向量基本定理,2.在平面向量中,向量 与向量 ( 0)共线的充要条件是存在实数, 使得 那么,空间任意一个向量 与两个不共线的向量 , 共面 时,它们之间存在什么样的关系呢?,问题情境,1.怎样的向量是共面的向量呢?,构建数学,如图,在长方体ABCDA1B1C1D1中, ,而 , , 在同一平面内,此时,我们称 , , 是共面向量,1 共面向量的定义 一般地,能平移到同一个平面内的向量叫共面向量;,(2)空间任意两个向量是共面的,但空间任意三个向量就不一定共面了,注意:(1)若 , 为不共线且同在平面内,则 与 , 共面的意义是 在

    2、内或 ,2共面向量的判定,平面向量中,向量 与非零向量 共线的充要条件是类比到空间向量,即有,共面向量定理 如果两个向量 , 不共线,那么向量 与向量 , 共面的充要条件是存在有序实数组(x,y),使得 x y ,这就是说,向量 可以由不共线的两个向量 , 线性表示,数学应用,例1 如图,已知矩形ABCD和矩形ADEF所在平面互相垂直,点M,N分别在对角线BD,AE上,且,求证:MN/平面CDE,证明: 又 与 不共线 根据共面向量定理,可知 , , 共面 由于MN不在平面CDE中,所以MN/平面CDE,例2 设空间任意一点O和不共线的三点A,B,C, 若点P满足向量关系 (其中xyz1) 试问 P,A,B,C四点是否共面?,例3 已知A,B,M三点不共线,对于平面 ABM外的任一点O,确定在下列各条件下, 点P是否与A,B,M一定共面?,练一练,(2)已知平行四边形ABCD,从平面AC外一点O引向量,,求证:四点E,F,G,H共面;平面AC平面EG,回顾小结,本节课学习了以下内容:1了解共面向量的含义;2理解共面向量定理;3能运用共面向量定理证明有关线面平行和点共面的简单问题,


    注意事项

    本文(2018年高中数学第3章空间向量与立体几何3.1.2共面向量定理课件5苏教版选修2_1.ppt)为本站会员(livefirmly316)主动上传,麦多课文档分享仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知麦多课文档分享(点击联系客服),我们立即给予删除!




    关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

    copyright@ 2008-2019 麦多课文库(www.mydoc123.com)网站版权所有
    备案/许可证编号:苏ICP备17064731号-1 

    收起
    展开