学习椭圆、双曲线、抛物线存在一些困惑?,1、椭圆、双曲线定义相似,抛物线的定义与椭圆、双曲线的定义区别较大 2、离心率:椭圆0e1 ,双曲线e1, 抛物线有没有离心率? 什么曲线的离心率等于1?,圆锥曲线的统一定义,平面内到一定点F的距离和到一定直线l (F不在l上)的距离比等于1的动点P 的轨迹是抛物线。,平面内到一定点F的距离和到一定直线l(F不在l上)的距离比为常数(不等于1)的动点P 的轨迹是什么?,在推导椭圆的标准方程时,我们曾经得到这样一个式子,思考?,你能解释这个式子的几何意义吗?,思考,平面内到一定点F 与到一条定直线l ( 点F 不在直线l 上)的距离之比为常数 e 的点的轨迹:,当 0 e 1 时, 点的轨迹是椭圆.,当 e 1 时, 点的轨迹是双曲线.,这样,圆锥曲线可以统一定义为:,当 e = 1 时, 点的轨迹是抛物线.,1、椭圆和双曲线有几条准线? 2、准线方程分别是什么?,思考?,练习1:求下列曲线的焦点坐标和准线方程,例2:已知双曲线 上一点P到左焦点的距离为14,求P点到右准线的距离.,A,B,P,C,O,课堂小结,1.圆锥曲线的统一定义 2.求点的轨迹的方法 3.数形结合的思想,谢谢指导,