欢迎来到麦多课文档分享! | 帮助中心 海量文档,免费浏览,给你所需,享你所想!
麦多课文档分享
全部分类
  • 标准规范>
  • 教学课件>
  • 考试资料>
  • 办公文档>
  • 学术论文>
  • 行业资料>
  • 易语言源码>
  • ImageVerifierCode 换一换
    首页 麦多课文档分享 > 资源分类 > PPT文档下载
    分享到微信 分享到微博 分享到QQ空间

    2018年高中数学第2章圆锥曲线与方程2.1圆锥曲线课件8苏教版选修2_1.ppt

    • 资源ID:1149987       资源大小:460KB        全文页数:18页
    • 资源格式: PPT        下载积分:5000积分
    快捷下载 游客一键下载
    账号登录下载
    微信登录下载
    二维码
    微信扫一扫登录
    下载资源需要5000积分(如需开发票,请勿充值!)
    邮箱/手机:
    温馨提示:
    如需开发票,请勿充值!快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如需开发票,请勿充值!如填写123,账号就是123,密码也是123。
    支付方式: 支付宝扫码支付    微信扫码支付   
    验证码:   换一换

    加入VIP,交流精品资源
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    2018年高中数学第2章圆锥曲线与方程2.1圆锥曲线课件8苏教版选修2_1.ppt

    1、2.1 圆锥曲线,用一个平面去截一个圆锥面,当平面经过圆锥面的顶点时,可得到两条相交直线;,当平面与圆锥面的轴垂直时,截线(平面与圆锥面的交线)是一个圆,当改变截面与圆锥面的轴的相对位置时,观察截线的变化情况,并思考:用平面截圆锥面还能得到哪些曲线?这些曲线具有哪些几何特征?,椭圆,双曲线,抛物线,椭圆的定义,平面内到两定点F1 ,F2的距离之和为常数(大于F1 F2距离)的点的轨迹叫椭圆,两个定点叫椭圆的焦点,两焦点的距离叫做椭圆的焦距.,古希腊数学家Dandelin在圆锥截面的两侧分别放置一球,使它们都与截面相切(切点分别为F1,F2),又分别与圆锥面的侧面相切(两球与侧面的公共点分别构成

    2、圆O1和圆O2)过M点作圆锥面的一条母线分别交圆O1,圆O2与P,Q两点,因为过球外一点作球的切线长相等,所以 MF1 = MP,MF2 = MQ,,MF1 + MF2 MP + MQ PQ定值,F1,双曲线的定义,平面内到两个定点F1,F2的距离的差的绝对值等于常数(小于 距离)的点的轨迹叫做双曲线,两个定点F1 , F2叫做双曲线的焦点,两焦点间的距离叫做双曲线的焦距,平面内与一个定点F和一条定直线l(F不在l上)的距离相等的点的轨迹叫做抛物线.定点F叫做抛物线的焦点. 定直线l 叫做抛物线的准线.,抛物线定义,椭圆的定义:,可以用数学表达式来体现:,设平面内的动点为M,有 (2a 的常数

    3、),思考:在椭圆的定义中,如果这个常数小于或等于 ,动点M的轨迹又如何呢?,平面内到两定点F1,F2的距离和等于常数(大于F1F2)的点的轨迹叫做椭圆,两个定点F1,F2叫做椭圆的焦点,两焦点间的距离叫做椭圆的焦距,双曲线的定义:,平面内到两定点 F1,F2的距离的差的绝对值等于常数(小于F1F2 )的点的轨迹叫做双曲线,两个定点F1,F2叫做双曲线的焦点,两焦点间的距离叫做双曲线的焦距,可以用数学表达式来体现:,设平面内的动点为M,有 (02a 的常数),思考:在双曲线的定义中,如果这个常数大于或等于 ,动点M的轨迹又如何呢?,抛物线的定义 :,平面内到一个定点F和一条定直线l(F不在l 上

    4、)的距离相等的点轨迹叫做抛物线,定点F叫做抛物线的焦点,定直线l叫做抛物线的准线.,设平面内的动点为M ,有MFd(d为动点M到直线l的距离),可以用数学表达式来体现:,说明:,1椭圆、双曲线、抛物线统称为圆锥曲线.,2我们可利用上面的三条关系式来判断动点M的轨迹是什么,证:(1)根据条件有ABAC2BC,即ABAC 12,即动点A到定点B,C的距离之和为定值12,且126BC,,所以点A在以B,C为焦点的一个椭圆上运动.,的焦点坐标分别(-3,0),(3,0),例2 动圆M过定圆C外的一点A,且与圆C外切,问:动圆圆心M的轨迹是什么图形?,A,M,C,变题:若动圆M过点A且与圆C 相切呢?,

    5、例3 已知定点F和定直线l,F不在直线l上,动圆M过F点且与直线l相切,求证:圆心M的轨迹是一条抛物线,分析:欲证明轨迹为抛物线只需抓住抛物线的定义即可,1.平面内到两定点F1(4,0)、F2(4,0)的距离和等于10的点的轨迹是 ( ) A. 椭圆 B.双曲线 C. 抛物线 D.线段,2.平面内到两定点F1(-1,0)、F2 (1,0)的距离的差的绝对值等于2的点的轨迹是 ( ) A. 椭圆 B.双曲线 C.线段 D.两条射线,课堂练习,4.平面内到点F (0,1)的距离与直线y1的距离相等的点的轨迹是_.,3.平面内的点F是定直线l上的一个定点,则到点F和直线l的距离相等的点的轨迹是 ( ) A. 一个点 B.一条线段 C. 一条射线 D.一条直线,课堂练习,(1)已知ABC中,BC长为6,周长为16,那么顶点A在怎样的曲线上运动?,课后练习,1.三种圆锥曲线的形成过程,2.椭圆的定义,3.双曲线的定义,4.抛物线的定义,课堂小结,


    注意事项

    本文(2018年高中数学第2章圆锥曲线与方程2.1圆锥曲线课件8苏教版选修2_1.ppt)为本站会员(terrorscript155)主动上传,麦多课文档分享仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知麦多课文档分享(点击联系客服),我们立即给予删除!




    关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

    copyright@ 2008-2019 麦多课文库(www.mydoc123.com)网站版权所有
    备案/许可证编号:苏ICP备17064731号-1 

    收起
    展开