欢迎来到麦多课文档分享! | 帮助中心 海量文档,免费浏览,给你所需,享你所想!
麦多课文档分享
全部分类
  • 标准规范>
  • 教学课件>
  • 考试资料>
  • 办公文档>
  • 学术论文>
  • 行业资料>
  • 易语言源码>
  • ImageVerifierCode 换一换
    首页 麦多课文档分享 > 资源分类 > PPT文档下载
    分享到微信 分享到微博 分享到QQ空间

    2018_2019学年高中数学第一章空间几何体1.2.3空间几何体的直观图课件新人教A版必修2.ppt

    • 资源ID:1145615       资源大小:1.16MB        全文页数:37页
    • 资源格式: PPT        下载积分:5000积分
    快捷下载 游客一键下载
    账号登录下载
    微信登录下载
    二维码
    微信扫一扫登录
    下载资源需要5000积分(如需开发票,请勿充值!)
    邮箱/手机:
    温馨提示:
    如需开发票,请勿充值!快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如需开发票,请勿充值!如填写123,账号就是123,密码也是123。
    支付方式: 支付宝扫码支付    微信扫码支付   
    验证码:   换一换

    加入VIP,交流精品资源
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    2018_2019学年高中数学第一章空间几何体1.2.3空间几何体的直观图课件新人教A版必修2.ppt

    1、1.2.3 空间几何体的直观图,目标导航,新知探求,课堂探究,新知探求素养养成,点击进入 情境导学,知识探究,1.斜二测画法的规则 (1)在已知图形中取 的x轴和y轴,两轴相交于O.画直观图时,把它们画成对应的x轴和y轴,两轴交于点O,且使xOy= .,它们确定的平面表示水平面. (2)已知图形中平行于x轴或y轴的线段,在直观图中分别画成平行于 或的线段.,互相垂直,45(或,135),x轴,y轴,(3)已知图形中平行于x轴的线段,在直观图中保持原长度 ;平行于y轴的线段,长度为原来的 . 2.空间图形直观图的画法 空间图形与平面图形相比多了一个z轴,其直观图中对应于z轴的是z轴,平面xOy表

    2、示水平平面,平面yOz和xOz表示直立平面.平行于z轴的线段,在直观图中平行性和长度都不变.,不变,一半,自我检测,1.(几何体的直观图画法)下列说法中正确的是( ) (A)互相垂直的两条直线的直观图仍然是两条互相垂直的直线 (B)梯形的直观图可能是平行四边形 (C)矩形的直观图可能是梯形 (D)正方形的直观图可能是平行四边形,D,2.(由直观图还原几何体)如图,ABC是ABC的直观图,其中AB= AC,那么ABC是( ) (A)等腰三角形 (B)直角三角形 (C)等腰直角三角形 (D)钝角三角形,B,3.(斜二测画法规则)若AB=2CD,ABx轴,CDy轴,在直观图中,AB的直观图 为AB,

    3、CD的直观图为CD,则( ) (A)AB=2CD (B)AB=CD (C)AB=4CD (D)AB= CD,C,4.(由直观图还原几何体)ABC是水平放置的ABC的直观图,则在ABC的三边及中线AD中,最长的线段是( )(A)AB (B)AD (C)BC (D)AC,D,5.(由直观图还原几何体)利用斜二测画法画一个水平放置的平行四边形的 直观图,得到的直观图是一个边长为1的正方形(如图),则原图形的形状是 ( ),A,6.(直观图与原图形的关系)一水平放置的平面四边形OABC,用斜二测画法画出它的直观图OABC,此直观图恰好是一个边长为1的正方形,则原平面四边形OABC面积为 .,题型一,画

    4、水平放置的平面图形的直观图,【例1】按如图的建系方法,画水平放置的正五边形ABCDE的直观图.,课堂探究素养提升,名师导引:画直观图时,在平面图形上建立坐标系,应使图形的顶点尽量多的在坐标轴上.,解:画法: (1)在图中作AGx轴于点G,作DHx轴于点H.,(2)在图中画相应的x轴与y轴,两轴相交于O, 使xOy=45.,(4)连接AB,AE,ED,DC,并擦去辅助线GA,HD,及点O,x轴与y轴,便得到水平放置的正五边形ABCDE的直观图ABCDE(如图).,方法技巧 画水平放置的平面图形的直观图的关键及注意点:画图的关键是确定顶点的位置,画图时要注意原图和直观图中线段的长度关系是否发生改变

    5、.,即时训练1-1:(2018河北黄骅一中高一测试)如图所示,四边形OABC是上底为2,下底为6,底角为45的等腰梯形,用斜二测画法,画出这个梯形的直观图OABC,在直观图中梯形的高为 .,【备用例1】 画出上底DC为1,下底AB为3,高为2的等腰梯形ABCD的直观图,并求直观图的面积.,解:(1)如图所示,取AB所在的直线为x轴,AB的中点O为原点,建立直角坐标系,画出对应的坐标系xOy,使xOy=45.,题型二,画空间几何体的直观图,【例2】有一个正六棱锥(底面为正六边形,侧面为全等的等腰三角形的棱锥),底面边长为3 cm,高为5 cm,画出这个正六棱锥的直观图.,解:(1)先画出边长为3

    6、 cm的正六边形水平放置的直观图,如图所示.,(2)过正六边形的中心O建立z轴,画出正六棱锥的顶点V,如图所示.,(3)连接VA,VB,VC,VD,VE,VF,如图所示.,(4)擦去辅助线,遮挡部分用虚线表示,即得到正六棱锥的直观图,如图所示.,方法技巧 (1)画空间几何体的直观图,可先画出底面的平面图形,然后画出竖轴.此外,坐标系的建立要充分利用图形的对称性,以便方便、准确地确定顶点; (2)对于一些常见几何体(如柱、锥、台、球)的直观图,应该记住它们的大致形状,以便可以又快又准的画出.,即时训练2-1:一个几何体,它的下面是一个圆柱,上面是一个圆锥,并且圆锥的底面与圆柱的上底面重合,圆柱的

    7、底面直径为3 cm,高为4 cm,圆锥的高为3 cm,画出此几何体的直观图.,解:(1)画轴.如图1所示,画x轴、z轴,使xOz=90.,(2)画圆柱的两底面,在x轴上取A,B两点,使AB的长度等于3 cm,且OA=OB.选择椭圆模板中适当的椭圆过A,B两点,使它为圆柱的下底面.在Oz上截取点O,使OO=4 cm,过O作Ox的平行线Ox,类似圆柱下底面的作法作出圆柱的上底面. (3)画圆锥的顶点.在Oz上截取点P,使PO等于圆锥的高3 cm. (4)成图.连接AA,BB,PA,PB,整理得到此几何体的直观图.如图2所示.,【备用例2】 用斜二测画法画棱长为2 cm的正方体ABCD-ABCD的直

    8、观图.,解:画法:(1)画轴.如图,画x轴、y轴、z轴,三轴相交于点O,使xOy= 45,xOz=90.,(2)画底面.以点O为中心,在x轴上取线段MN,使MN=2 cm; 在y轴上取线段PQ,使PQ=1 cm. 分别过点M和N作y轴的平行线,过点P和Q作x轴的平行线, 设它们的交点分别为A,B,C,D, 四边形ABCD就是正方体的底面ABCD. (3)画侧棱.过A,B,C,D各点分别作z轴的平行线,并在这些平行线上分别截取2 cm长的线段AA,BB,CC,DD. (4)成图.顺次连接A,B,C,D,并加以整理(去掉辅助线,将被遮挡的部分改为虚线),就得到正方体的直观图(如图).,题型三,直观

    9、图还原为平面图形,【例3】(10分)如图是一梯形OABC的直观图,其直观图面积为S,求梯形OABC的面积.,规范解答:设OC=h, 则原梯形是一个直角梯形且高为2h. CB=CB,OA=OA.2分,变式探究:如例题图所示,若在OA上取点D,且梯形ABCD的面积是S,求梯形ABCD的面积.,方法技巧 (1)还原图形的过程是画直观图的逆过程,关键是找与x轴、y轴平行的直线或线段.平行于x轴的线段长度不变,平行于y轴的线段还原时长度变为原来的2倍,由此确定图形的各个顶点,顺次连接即可. (2)求图形的面积,关键是能先正确画出图形,然后求出相应边的长度,利用公式求解.,即时训练3-1:(2018安徽省合肥市一中月考)一个水平放置的三角形的斜二测直观图是等腰直角三角形ABO,如图若OB=1,那么原ABO的面积与直观图的面积之比为 .,【备用例3】 如图所示,正方形OABC的边长为1 cm,它是水平放置的一个平面图形的直观图,求原图形的周长.,题型四,易错辨析忽视了边长的变化导致计算出错,【例4】 (2018合肥期末质检)一个水平放置的平面图形的斜二测直观图 是一个底角为45,腰和上底长均为1的等腰梯形,则这个平面图形的面积是 .,纠错:导致上述错解的原因为:在计算梯形面积时忽视了直观图边长的变化,误认为原图形的高就是直观图的高的2倍.,谢谢观赏!,


    注意事项

    本文(2018_2019学年高中数学第一章空间几何体1.2.3空间几何体的直观图课件新人教A版必修2.ppt)为本站会员(sofeeling205)主动上传,麦多课文档分享仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知麦多课文档分享(点击联系客服),我们立即给予删除!




    关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

    copyright@ 2008-2019 麦多课文库(www.mydoc123.com)网站版权所有
    备案/许可证编号:苏ICP备17064731号-1 

    收起
    展开