欢迎来到麦多课文档分享! | 帮助中心 海量文档,免费浏览,给你所需,享你所想!
麦多课文档分享
全部分类
  • 标准规范>
  • 教学课件>
  • 考试资料>
  • 办公文档>
  • 学术论文>
  • 行业资料>
  • 易语言源码>
  • ImageVerifierCode 换一换
    首页 麦多课文档分享 > 资源分类 > DOC文档下载
    分享到微信 分享到微博 分享到QQ空间

    2019高考数学二轮复习专题提能一函数、导数与不等式的提分策略能力训练理.doc

    • 资源ID:1139067       资源大小:101.50KB        全文页数:5页
    • 资源格式: DOC        下载积分:2000积分
    快捷下载 游客一键下载
    账号登录下载
    微信登录下载
    二维码
    微信扫一扫登录
    下载资源需要2000积分(如需开发票,请勿充值!)
    邮箱/手机:
    温馨提示:
    如需开发票,请勿充值!快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如需开发票,请勿充值!如填写123,账号就是123,密码也是123。
    支付方式: 支付宝扫码支付    微信扫码支付   
    验证码:   换一换

    加入VIP,交流精品资源
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    2019高考数学二轮复习专题提能一函数、导数与不等式的提分策略能力训练理.doc

    1、1专题提能一 函数、导数与不等式的提分策略1(2018胶州模拟)已知函数 f(x) (aR,e 为自然对数的底数,e2.718 x aex28)(1)若曲线 y f(x)在 x0 处的切线的斜率为1,求实数 a 的值;(2)求 f(x)在1,1上的最大值 g(a);(3)当 a0 时,若对任意的 x(0,1),恒有 f(x)f ,求正实数 m 的最小值(mx)解析:(1) f( x) , f(0)1 a1,解得 a2.ex x a ex ex 2 1 x aex(2)由 f( x)0,得 x1 a.所以 f(x)的单调递增区间是(,1 a),单调递减区间是(1 a,)当 1 a2 时, f(x

    2、)在1,1上单调递减, f(x)max f(1)( a1)e;当11 a1,即 0 a2 时, x1 a 为 f(x)在区间1,1上的极大值点,也是最大值点,所以 f(x)max f(1 a) ;1e1 a当 1 a1,即 af(1),与 f(x)在(,1)上单调递增矛盾,所以只有m1.当 m1 时, 1,所以 f f ,故只需 f(x)f ,即可满足 f(x)f .mx 1x (1x) (mx) (1x) (mx)下面证明 f(x)f 在区间(0,1)上恒成立(1x)f(x)f ,即 ,即 xe ex,即 x2ex ,两边取对数,(1x) xex1xe1x 1x1x 1x得 ln x .12

    3、(x 1x)构造函数 h(x)ln x ,则 h( x) ,对任意的12(x 1x) 1x 12(1 1x2) x 1 22x2x(0,1), h( x)h(1)0,所以 ln x .12(x 1x)综上可知,正实数 m 的最小值为 1.2(2018贵阳模拟)设函数 f(x) xln(ax)(a0)(1)设 F(x) f(1)x2 f( x),讨论函数 F(x)的单调性;12(2)过两点 A(x1, f( x1), B(x2, f( x2)(x10,函数 F(x)在(0,)上是增函数;当 ln a0,得(ln a)x210,解得 0 . 1ln a所以函数 F(x)在 上为增函数,在 上为减函

    4、数(0, 1ln a) ( 1ln a, )(2)证明:因为k , x2 x10,要证 1,则只要证 1 0(t1),故 g(t)在(1,)上是增函1t数所以当 t1 时, g(t) t1ln tg(1)0,即 t1ln t 成立要证 1 1,即证 t10(t1),故函数 h(t)在(1,)上是增函数,所以当 t1 时, h(t) tln t( t1) h(1)0,即 t1k(x1) ax x 恒成立,求正整数 k 的值解析:(1)由 f(x) xln x ax,得 f( x)ln x a1,函数 f(x)在区间e 2,)上为增函数,当 xe 2,)时, f( x)0,即 ln x a10 在

    5、区间e 2,)上恒成立, a1ln x.又当 xe 2,) 时,ln x2,),1ln x(,3 a3.(2)若对任意 x(1,), f(x)k(x1) ax x 恒成立,即 xln x axk(x1) ax x 恒成立,也就是 k(x1)0.则问题转化为 k0,则 m(x) xln x2 在(1,)上为增函数 , m(1)1ln 121, m(2)2ln 22ln 2,m(3)3ln 321ln 30. x0(3,4) ,使 m(x0) x0ln x020.当 x(1, x0)时, m(x)0, h( x)0, h(x) 在( x0,)上单调递增,xln x xx 1 h(x)的最小值为 h

    6、(x0) .x0ln x0 x0x0 1 m(x0) x0ln x020,ln x01 x01,代入函数 h(x) 得 h(x0)xln x xx 14 x0, x0(3,4),且 k 成立ni 1i 1i2解析:由题意得 f( x) 2 ax(2 a1) 1x 2ax2 2a 1 x 1x, x(0,) 2ax 1 x 1x(1)由题意得 f(2)1,即 1,解得 a .4a 12 34(2)当 a0 时,2 ax10 得 01,故函数 f(x)在(0,1)上单调递增,在(1,)上单调递减当 a0 时,令 f( x)0 得 x1 或 x ,12a当 时,由 f( x)0 得 x1 或 01,

    7、即 00,得 x 或 0 时,函数 f(x)在 上单调递增,在 上单调递减,在(1,)上单12 (0, 12a) (12a, 1)5调递增(3)证明:由(2)知,当 a1 时,函数 f(x)ln x x23 x 在(1,)上单调递增,ln x x23 x f(1)2,即 ln x x23 x2( x1)( x2),令 x1 , nN *,则 ln ,1n (1 1n)1n 1n2ln ln ln ln ,(111) (1 12) (1 13) (1 1n)11 112 12 122 13 132 1n 1n2ln ,即(111)(1 12)(1 13)(1 1n)11 112 12 122 13 132 1n 1n2ln(1 n) .n i 1i 1i2故对任意的 nN *,都有 ln(1 n) 成立n i 1i 1i2


    注意事项

    本文(2019高考数学二轮复习专题提能一函数、导数与不等式的提分策略能力训练理.doc)为本站会员(ownview251)主动上传,麦多课文档分享仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知麦多课文档分享(点击联系客服),我们立即给予删除!




    关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

    copyright@ 2008-2019 麦多课文库(www.mydoc123.com)网站版权所有
    备案/许可证编号:苏ICP备17064731号-1 

    收起
    展开