欢迎来到麦多课文档分享! | 帮助中心 海量文档,免费浏览,给你所需,享你所想!
麦多课文档分享
全部分类
  • 标准规范>
  • 教学课件>
  • 考试资料>
  • 办公文档>
  • 学术论文>
  • 行业资料>
  • 易语言源码>
  • ImageVerifierCode 换一换
    首页 麦多课文档分享 > 资源分类 > PPT文档下载
    分享到微信 分享到微博 分享到QQ空间

    2019高中数学第三章圆锥曲线与方程3.1椭圆3.1.2椭圆的简单性质课件北师大版选修2_1.ppt

    • 资源ID:1119391       资源大小:2.13MB        全文页数:35页
    • 资源格式: PPT        下载积分:5000积分
    快捷下载 游客一键下载
    账号登录下载
    微信登录下载
    二维码
    微信扫一扫登录
    下载资源需要5000积分(如需开发票,请勿充值!)
    邮箱/手机:
    温馨提示:
    如需开发票,请勿充值!快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如需开发票,请勿充值!如填写123,账号就是123,密码也是123。
    支付方式: 支付宝扫码支付    微信扫码支付   
    验证码:   换一换

    加入VIP,交流精品资源
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    2019高中数学第三章圆锥曲线与方程3.1椭圆3.1.2椭圆的简单性质课件北师大版选修2_1.ppt

    1、1.2 椭圆的简单性质,一,二,思考辨析,一,二,思考辨析,【做一做1】 已知椭圆的方程为9x2+y2=81,则它的长轴长为 ,短轴长为 ,焦点坐标为 ,顶点坐标为 ,离心率为 .,一,二,思考辨析,一,二,思考辨析,名师点拨椭圆的焦半径公式:若r1,r2分别表示椭圆 (ab0)上一点P(x0,y0)与两个焦点F1(-c,0),F2(c,0)间的距离,则r1=a+ex0,r2=a-ex0.这个椭圆上所有的点与焦点F1(-c,0)的最近距离与最远距离分别是a-c,a+c.,一,二,思考辨析,A.长轴长 B.焦点 C.离心率 D.顶点,答案:C,一,二,思考辨析,判断下列说法是否正确,正确的在后面

    2、的括号内打“”,错误的打“”. (1)椭圆的顶点坐标、长轴长、短轴长、离心率等都与椭圆焦点所在的坐标轴有关. ( ) (2)椭圆的焦点一定在长轴上. ( ),探究一,探究二,探究三,探究四,思维辨析,椭圆的几何性质 【例1】 已知椭圆x2+(m+3)y2=m(m0)的离心率e= ,求m的值及椭圆的长轴和短轴的长、焦点坐标和顶点坐标. 思维点拨:先将椭圆方程化为标准形式,用m表示a,b,c,再由e= 求出m的值.,探究一,探究二,探究三,探究四,思维辨析,反思感悟对原方程化为标准方程后一定要注意对椭圆焦点所在坐标轴的判断.,探究一,探究二,探究三,探究四,思维辨析,变式训练1已知点 在椭圆y2+

    3、(m+3)x2=m(m0)上,求椭圆的长轴长、短轴长、顶点坐标、焦点坐标、离心率.,探究一,探究二,探究三,探究四,思维辨析,由椭圆的性质求椭圆方程 【例2】求适合下列条件的椭圆的标准方程. (1)长轴长和短轴长分别为8和6,焦点在x轴上; (2)长轴和短轴分别在y轴、x轴上,经过P(-2,0)和Q(0,-3)两点; (3)一个焦点为(-3,0),一个顶点为(0,5); (4)两个顶点为(0,6)且过点(5,4); (5)焦距为12,离心率为0.6,焦点在x轴上; (6)长轴长是短轴长的5倍,过P(6,2)点; (7)短轴的一个端点与两个焦点构成等边三角形,短半轴长为 ,焦点在x轴上. 思维点

    4、拨:解决这类问题时首先看焦点的位置,根据焦点的位置设标准方程,其次根据条件求a,b的值,最后写出标准方程.,探究一,探究二,探究三,探究四,思维辨析,探究一,探究二,探究三,探究四,思维辨析,探究一,探究二,探究三,探究四,思维辨析,探究一,探究二,探究三,探究四,思维辨析,反思感悟已知椭圆的几何性质,求其标准方程主要采用待定系数法,解题步骤如下: (1)确定焦点所在的位置,以确定椭圆标准方程的形式; (2)确立关于a,b,c的方程(组),求出参数a,b,c; (3)写出标准方程.,探究一,探究二,探究三,探究四,思维辨析,变式训练2已知椭圆的离心率为 ,经过点(2,0),求出椭圆的标准方程.

    5、,探究一,探究二,探究三,探究四,思维辨析,求椭圆的离心率 【例3】 椭圆 (ab0)的两焦点为F1,F2,以F1F2为边作正三角形,若椭圆恰好平分正三角形的另两条边,则椭圆的离心率为 . 思维点拨:利用椭圆的定义和正三角形中的边角关系,列出关系式求解.,探究一,探究二,探究三,探究四,思维辨析,解析:DF1F2为正三角形,N为DF2的中点,F1NF2N, |NF2|=c,探究一,探究二,探究三,探究四,思维辨析,反思感悟求椭圆的离心率的基本方法:,(2)根据条件及几何图形建立a,b,c,e的关系式,先化为a,c的齐次方程,列式时常用b2=a2-c2代替式子中的b2,再将等式两边同时除以a的n

    6、次方,利用e= 转化为含e的方程,解方程即可,此时要注意0e1.,探究一,探究二,探究三,探究四,思维辨析,变式训练3若一个椭圆长轴的长度、短轴的长度和焦距成等差数列,则该椭圆的离心率是 .,解析:由题意知2a+2c=22b,即a+c=2b,又c2=a2-b2,消去b整理得5c2+2ac-3a2=0,即5e2+2e-3=0,e= 或e=-1(舍去).,探究一,探究二,探究三,探究四,思维辨析,直线与椭圆的位置关系 【例4】已知直线l:y=2x+m,椭圆C: =1.试问当m取何值时,直线l与椭圆C: (1)有两个公共点; (2)有且只有一个公共点; (3)没有公共点. 思维点拨:将直线方程与椭圆

    7、方程联立,利用判别式判断一元二次方程解的个数,从而得出结论.,探究一,探究二,探究三,探究四,思维辨析,消去y,得9x2+8mx+2m2-4=0. 方程的判别式=(8m)2-49(2m2-4)=-8m2+144. (1)当0,即-3 3 时,方程没有实数解,可知原方程组没有实数解.这时直线l与椭圆C没有公共点.,反思感悟直线与椭圆的位置关系的判断: 判断直线与椭圆的交点情况就是要联立方程组,消去x(或y),转化为关于y(或x)的一元二次方程,利用判别式求解.,探究一,探究二,探究三,探究四,思维辨析,变式训练4已知椭圆 =1,直线l:4x-5y+40=0,椭圆上是否存在一点到直线l的距离最小?

    8、最小距离是多少?,解:设直线m平行于l,则m可以为4x-5y+k=0,得25x2+8kx+k2-225=0.由=0,得64k2-425(k2-225)=0, 解得k1=25,k2=-25.由图可知k=25. 直线m与椭圆的交点到直线l的距离最近,探究一,探究二,探究三,探究四,思维辨析,解决椭圆问题时忽视分类讨论致误,易错分析:椭圆的离心率的大小只反映了a与c的数量关系,并不能确定焦点的位置,所以需分类讨论.,解:(1)若焦点在x轴上,即k+89时,a2=k+8,b2=9,探究一,探究二,探究三,探究四,思维辨析,纠错心得本题错解在于默认为椭圆焦点在x轴上,从而导致漏解.事实上,当已知椭圆的离

    9、心率时,椭圆的焦点位置是不确定的,焦点可以在x轴上,也可以在y轴上,因此在求解时应分类讨论.,探究一,探究二,探究三,探究四,思维辨析,变式训练已知椭圆的中心在原点,对称轴是坐标轴,离心率e= ,且过点P(2,3),求此椭圆的标准方程.,探究一,探究二,探究三,探究四,思维辨析,1 2 3 4 5,A.点(-3,-2)不在椭圆上 B.点(3,-2)不在椭圆上 C.点(-3,2)在椭圆上 D.无法判断点(-3,-2),(3,-2),(-3,2)是否在椭圆上 解析:由椭圆关于坐标轴对称,关于原点中心对称可知,点(-3,-2),(3,-2),(-3,2)都在椭圆上. 答案:C,1 2 3 4 5,2.已知椭圆的长轴长是短轴长的2倍,则椭圆的离心率等于( ),解析:由题意知2a=22b,即a2=4b2=b2+c2,答案:D,1 2 3 4 5,直线与椭圆有两个公共点. 答案:C,1 2 3 4 5,4.已知椭圆的对称轴是坐标轴,离心率为 ,长轴长为12,则椭圆的标准方程为 .,c=2,b2=a2-c2=32. 又椭圆焦点的位置不确定,1 2 3 4 5,1 2 3 4 5,


    注意事项

    本文(2019高中数学第三章圆锥曲线与方程3.1椭圆3.1.2椭圆的简单性质课件北师大版选修2_1.ppt)为本站会员(吴艺期)主动上传,麦多课文档分享仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知麦多课文档分享(点击联系客服),我们立即给予删除!




    关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

    copyright@ 2008-2019 麦多课文库(www.mydoc123.com)网站版权所有
    备案/许可证编号:苏ICP备17064731号-1 

    收起
    展开