欢迎来到麦多课文档分享! | 帮助中心 海量文档,免费浏览,给你所需,享你所想!
麦多课文档分享
全部分类
  • 标准规范>
  • 教学课件>
  • 考试资料>
  • 办公文档>
  • 学术论文>
  • 行业资料>
  • 易语言源码>
  • ImageVerifierCode 换一换
    首页 麦多课文档分享 > 资源分类 > PPT文档下载
    分享到微信 分享到微博 分享到QQ空间

    2019高中数学第一章计数原理二项式定理的应用(习题课)课件北师大版选修2_3.ppt

    • 资源ID:1119387       资源大小:3.79MB        全文页数:27页
    • 资源格式: PPT        下载积分:5000积分
    快捷下载 游客一键下载
    账号登录下载
    微信登录下载
    二维码
    微信扫一扫登录
    下载资源需要5000积分(如需开发票,请勿充值!)
    邮箱/手机:
    温馨提示:
    如需开发票,请勿充值!快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如需开发票,请勿充值!如填写123,账号就是123,密码也是123。
    支付方式: 支付宝扫码支付    微信扫码支付   
    验证码:   换一换

    加入VIP,交流精品资源
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    2019高中数学第一章计数原理二项式定理的应用(习题课)课件北师大版选修2_3.ppt

    1、习题课二项式定理的应用,二项展开式的应用 1.利用通项公式 求指定项、特征项(常数项,有理项等)或特征项的系数. 2.近似计算,当|a|与1相比较很小且n不大时,常用近似公式(1a)n1na,使用公式时要注意a的条件以及对计算精确度的要求. 3.整除性问题与求余数问题,对被除式进行合理的变形,把它写成恰当的二项式的形式,使其展开后的每一项含有除式的因式或只有一、二项不能整除. 4.解决与杨辉三角有关的问题的一般方法是:观察分析,试验猜想结论证明,要得出杨辉三角中的数字的诸多排列规律,取决于我们的观察能力,注意观察方法:横看、竖看、斜看、连续看、隔行看,从多角度观察.,探究一,探究二,探究三,思

    2、维辨析,【例1】 在(3x-2y)20中,求: (1)二项式系数最大的项; (2)系数绝对值最大的项; (3)系数最大的项.,探究一,探究二,探究三,思维辨析,探究一,探究二,探究三,思维辨析,探究一,探究二,探究三,思维辨析,探究一,探究二,探究三,思维辨析,【例2】 (1)用二项式定理证明1110-1能被100整除; (2)求9192被100除所得的余数. 分析利用二项式定理证明整除问题关键是判断所证式子与除数之间的联系,要掌握好对式子的拆分,如本例的第(1)小题,可以利用1110=(10+1)10的展开式进行证明,第(2)小题则可利用9192=(100-9)92的展开式,或利用(90+1

    3、)92的展开式进行求解.,探究一,探究二,探究三,思维辨析,探究一,探究二,探究三,思维辨析,探究一,探究二,探究三,思维辨析,反思感悟 1.整除性问题或求余数问题的处理方法 (1)解决这类问题,必须构造一个与题目条件有关的二项式. (2)用二项式定理处理这类问题,通常把被除数的底数写成除数(或与除数密切关联的数)与某数的和或差的形式,再用二项式定理展开,只考虑后面(或者是前面)的几项就可以了. (3)要注意余数的范围,a=cr+b这式子中b为余数,b0,r),r是除数,利用二项式定理展开式变形后,若剩余部分是负数要注意转换. 2.利用二项式证明多项式的整除问题 关键是将被除式变形为二项式的形

    4、式,使其展开后每一项均含有除式的因式.若f(x),g(x),h(x),r(x)均为多项式,则 (1)f(x)=g(x)h(x)f(x)被g(x)整除. (2)f(x)=g(x)h(x)+r(x)r(x)为g(x)除f(x)后得的余式.,探究一,探究二,探究三,思维辨析,探究一,探究二,探究三,思维辨析,【例3】若(x+2+m)9=a0+a1(x+1)+a2(x+1)2+a9(x+1)9,且(a0+a2+a8)2-(a1+a3+a9)2=39,则实数m的值为( ) A.1或-3 B.-1或3 C.1 D.-3 解析令x=0,得到a0+a1+a2+a9=(2+m)9,令x=-2,得到a0-a1+a

    5、2-a3+-a9=m9,所以有(2+m)9m9=39,即m2+2m=3,解得m=1或-3. 答案A,探究一,探究二,探究三,思维辨析,互动探究本例变为:若(x+2+m)9=a0+a1(x-1)+a2(x-1)2+a9(x-1)9,且(a0+a2+a8)2-(a1+a3+a9)2=39,则实数m的值为 . 解析:令x=2,得到a0+a1+a2+a9=(4+m)9,令x=0,得到a0-a1+a2-a3+-a9=(m+2)9, 所以有(4+m)9(m+2)9=39, 即m2+6m+5=0,解得m=-1或m=-5. 答案:-1或-5,探究一,探究二,探究三,思维辨析,反思感悟 1.二项式定理给出的是一个恒等式,对于a,b的一切值都成立.因此,可将a,b设定为一些特殊的值.在使用赋值法时,令a,b等于多少时,应视具体情况而定,一般取“1,-1或0”,有时也取其他值.,探究一,探究二,探究三,思维辨析,探究一,探究二,探究三,思维辨析,探究一,探究二,探究三,思维辨析,探究一,探究二,探究三,思维辨析,1,2,3,1,2,3,3.已知(2-3x)9=a0+a1x+a2x2+a9x9,则a1+a2+a9= . 解析:由题意,令x=1,得a0+a1+a2+a9=-1,令x=0,得a0=29,所以a1+a2+a9=-1-29. 答案:-1-29,1,2,3,1,2,3,答案:180,


    注意事项

    本文(2019高中数学第一章计数原理二项式定理的应用(习题课)课件北师大版选修2_3.ppt)为本站会员(吴艺期)主动上传,麦多课文档分享仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知麦多课文档分享(点击联系客服),我们立即给予删除!




    关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

    copyright@ 2008-2019 麦多课文库(www.mydoc123.com)网站版权所有
    备案/许可证编号:苏ICP备17064731号-1 

    收起
    展开