欢迎来到麦多课文档分享! | 帮助中心 海量文档,免费浏览,给你所需,享你所想!
麦多课文档分享
全部分类
  • 标准规范>
  • 教学课件>
  • 考试资料>
  • 办公文档>
  • 学术论文>
  • 行业资料>
  • 易语言源码>
  • ImageVerifierCode 换一换
    首页 麦多课文档分享 > 资源分类 > PPTX文档下载
    分享到微信 分享到微博 分享到QQ空间

    (浙江专用)2020版高考数学新增分大一轮复习第九章平面解析几何9.5椭圆(第2课时)直线与椭圆课件.pptx

    • 资源ID:1116745       资源大小:15.80MB        全文页数:66页
    • 资源格式: PPTX        下载积分:5000积分
    快捷下载 游客一键下载
    账号登录下载
    微信登录下载
    二维码
    微信扫一扫登录
    下载资源需要5000积分(如需开发票,请勿充值!)
    邮箱/手机:
    温馨提示:
    如需开发票,请勿充值!快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如需开发票,请勿充值!如填写123,账号就是123,密码也是123。
    支付方式: 支付宝扫码支付    微信扫码支付   
    验证码:   换一换

    加入VIP,交流精品资源
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    (浙江专用)2020版高考数学新增分大一轮复习第九章平面解析几何9.5椭圆(第2课时)直线与椭圆课件.pptx

    1、第2课时 直线与椭圆,第九章 9.5 椭 圆,NEIRONGSUOYIN,内容索引,题型分类 深度剖析,课时作业,题型分类 深度剖析,1,PART ONE,1.若直线ykx1与椭圆 总有公共点,则m的取值范围是 A.m1 B.m0 C.0m5且m1 D.m1且m5,题型一 直线与椭圆的位置关系,自主演练,解析 方法一 由于直线ykx1恒过点(0,1), 所以点(0,1)必在椭圆内或椭圆上,,消去y整理得(5k2m)x210kx5(1m)0. 由题意知100k220(1m)(5k2m)0对一切kR恒成立, 即5mk2m2m0对一切kR恒成立, 由于m0且m5,m1且m5.,将代入,整理得9x28

    2、mx2m240. 方程根的判别式(8m)249(2m24)8m2144. 当0,即 时,方程有两个不同的实数根,可知原方程组有两组不同的实数解.这时直线l与椭圆C有两个不重合的公共点.,2.已知直线l:y2xm,椭圆C: 试问当m取何值时,直线l与椭圆C: (1)有两个不重合的公共点;,解 将直线l的方程与椭圆C的方程联立,,(2)有且只有一个公共点;,解 当0,即m 时,方程有两个相同的实数根,可知原方程组有两组相同的实数解.这时直线l与椭圆C有两个互相重合的公共点,即直线l与椭圆C有且只有一个公共点.,(3)没有公共点.,解 当0,即 方程没有实数根,可知原方程组没有实数解.这时直线l与椭

    3、圆C没有公共点.,研究直线与椭圆位置关系的方法 (1)研究直线和椭圆的位置关系,一般转化为研究其直线方程与椭圆方程组成的方程组解的个数. (2)对于过定点的直线,也可以通过定点在椭圆内部或椭圆上判定直线和椭圆有交点.,题型二 弦长及中点弦问题,多维探究,命题点1 弦长问题,解析 设A,B两点的坐标分别为(x1,y1),(x2,y2), 直线l的方程为yxt,,命题点2 中点弦问题 例2 已知P(1,1)为椭圆 1内一定点,经过P引一条弦,使此弦被P点平分,则此弦所在的直线方程为_.,x2y30,解析 方法一 易知此弦所在直线的斜率存在, 所以设其方程为y1k(x1), 弦所在的直线与椭圆相交于

    4、A,B两点,设A(x1,y1),B(x2,y2).,消去y得,(2k21)x24k(k1)x2(k22k1)0,,即x2y30.,方法二 易知此弦所在直线的斜率存在, 所以设斜率为k,弦所在的直线与椭圆相交于A,B两点, 设A(x1,y1),B(x2,y2),,x1x22,y1y22,,即x2y30.,(1)解决直线与椭圆的位置关系的相关问题,其常规思路是先把直线方程与椭圆方程联立,应用根与系数的关系,解决相关问题.涉及中点弦的问题时用“点差法”解决,往往会更简单. (2)设直线与椭圆的交点坐标为A(x1,y1),B(x2,y2),,(3)利用公式计算直线被椭圆截得的弦长是在方程有解的情况下进

    5、行的,不要忽略判别式.,(1)求椭圆E的离心率;,解 过点(c,0),(0,b)的直线方程为bxcybc0,,(2)如图,AB是圆M:(x2)2(y1)2 的一条直径,若椭圆E经过A,B两点,求椭圆E的方程.,解 方法一 由(1)知,椭圆E的方程为x24y24b2. ,易知,AB与x轴不垂直, 设其方程为yk(x2)1, 代入得(14k2)x28k(2k1)x4(2k1)24b20,,方法二 由(1)知,椭圆E的方程为x24y24b2, ,两式相减并结合x1x24,y1y22, 得4(x1x2)8(y1y2)0, 易知AB与x轴不垂直,则x1x2,,代入得x24x82b20, 所以x1x24,

    6、x1x282b2,,题型三 椭圆与向量等知识的综合,师生共研,(1)求椭圆C的标准方程;,故b2a2c23,,(2)求实数的值.,设点A(x1,y1),点B(x2,y2). 若直线ABx轴,则x1x21,不符合题意; 当AB所在直线l的斜率k存在时, 设l的方程为yk(x1).,的判别式64k44(4k23)(4k212)144(k21)0.,一般地,在椭圆与向量等知识的综合问题中,平面向量只起“背景”或“结论”的作用,几乎都不会在向量的知识上设置障碍,所考查的核心内容仍然是解析几何的基本方法和基本思想.,(1)求椭圆C的方程;,解 设A(x1,y1),B(x2,y2),P(x0,y0),,消

    7、去y,可得(34k2)x28kmx4m2120,,又点P在椭圆C上,,课时作业,2,PART TWO,1.若直线mxny4与O:x2y24没有交点,则过点P(m,n)的直线与椭圆 1的交点个数是 A.至多为1 B.2 C.1 D.0,基础保分练,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,解析 由题意知椭圆的右焦点F的坐标为(1,0), 则直线AB的方程为y2x2.,1,2,3,4,5,6,7,8,9,10

    8、,11,12,13,14,15,16,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,解析 设弦的端点A(x1,y1),B(x2,y2),,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,4.已知F1(1,0),F2(1,0)是椭圆C的两个焦点,过F2且垂直于x轴的直线与椭圆C交于A,B两点,且|AB|3,则C的方程为,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,则c1.因为过F2且垂直于x轴的直线与椭圆交于A,B两点,且|AB|3,,1,2,3,4,5,6,7,8,9,10,11,12,13,14,

    9、15,16,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,解析 依题意,当直线l经过椭圆的右焦点(1,0)时, 其方程为y0tan 45(x1),即yx1.,A.4 B.3 C.2 D.1,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,PF1PF2,F1PF290. 设|PF1|m,|PF2|n, 则mn4,m2n212,2mn4,mn2,,7.直线ykxk1与椭圆 1的位置关系是_.,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,解析 由于直线ykxk1k(x1)1过定点(1,1),而(1,1)在

    10、椭圆内,故直线与椭圆必相交.,相交,8.(2018浙江余姚中学质检)若椭圆C: 1的弦被点P(2,1)平分,则这条弦所在的直线l的方程是_,若点M是直线l上一点,则M到椭 圆C的两个焦点的距离之和的最小值为_.,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,x2y40,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,解析 当直线l的斜率不存在时不满足题意,,9.已知椭圆C: 1(ab0)的左焦点为F,椭圆C与过原点的直线相交于A,B两点,连接AF,BF,若|AB|10,|AF|6,cosABF 则椭圆C的离心率e_.,1,2,3,4

    11、,5,6,7,8,9,10,11,12,13,14,15,16,解析 设椭圆的右焦点为F1,在ABF中,由余弦定理可解得|BF|8, 所以ABF为直角三角形,且AFB90, 又因为斜边AB的中点为O,所以|OF|c5,连接AF1, 因为A,B关于原点对称,所以|BF|AF1|8,,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,(1)求椭圆E的方程;,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,解 由题意知,直线AB的斜率存在且不为0, 故可设直线AB的

    12、方程为xmy1, 设A(x1,y1),B(x2,y2).,因为F1(1,0),,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,(1)求椭圆的标准方程;,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,解 设椭圆C的焦距为2c,,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,(2)过点P(6,0)的直线l交椭圆于A,B两点,Q是x轴上的点,若ABQ是以AB为斜边的等腰直角三角形,求l的方程.,1,2,3,4,5,6,7,8,9

    13、,10,11,12,13,14,15,16,解 设AB的中点坐标为(x0,y0),A(x1,y1),B(x2,y2),,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,所以直线l的方程为x3y60.,技能提升练,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,解析 方法一 |OA|OF2|2|OM|,M在椭圆C的短轴上, 设椭圆C的左焦点为F1,连接AF1,,又|AF1|2|AF2

    14、|2(2c)2,,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,方法二 |OA|OF2|2|OM|,M在椭圆C的短轴上,,设椭圆C的左焦点为F1,连接AF1,,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,14.已知椭圆 1(ab0)短轴的端点为P(0,b),Q(0,b),长轴的一个端点为M,AB为经过椭圆中心且不在坐标轴上的一条弦,若PA,PB的 斜率之积等于 则点P到直线QM的距离为_.,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,解析 设A(x0,y0),则B点坐标为(x0,y0),,则直线

    15、QM的方程为bxayab0,,拓展冲刺练,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,解析 设AB的中点为G,则由椭圆的对称性知,O为平行四边形ABCD的对角线的交点,则GOAD. 设A(x1,y1),B(x2,y2),,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,解 设M(x0,y0),P(x1,y1),Q(x2,y2), 由题意知PQ的斜率存在,且不为0,所以x0y00,,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,


    注意事项

    本文((浙江专用)2020版高考数学新增分大一轮复习第九章平面解析几何9.5椭圆(第2课时)直线与椭圆课件.pptx)为本站会员(eventdump275)主动上传,麦多课文档分享仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知麦多课文档分享(点击联系客服),我们立即给予删除!




    关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

    copyright@ 2008-2019 麦多课文库(www.mydoc123.com)网站版权所有
    备案/许可证编号:苏ICP备17064731号-1 

    收起
    展开