欢迎来到麦多课文档分享! | 帮助中心 海量文档,免费浏览,给你所需,享你所想!
麦多课文档分享
全部分类
  • 标准规范>
  • 教学课件>
  • 考试资料>
  • 办公文档>
  • 学术论文>
  • 行业资料>
  • 易语言源码>
  • ImageVerifierCode 换一换
    首页 麦多课文档分享 > 资源分类 > DOC文档下载
    分享到微信 分享到微博 分享到QQ空间

    2020高考数学一轮复习课时作业37合情推理与演绎推理理.doc

    • 资源ID:1104576       资源大小:2.07MB        全文页数:8页
    • 资源格式: DOC        下载积分:2000积分
    快捷下载 游客一键下载
    账号登录下载
    微信登录下载
    二维码
    微信扫一扫登录
    下载资源需要2000积分(如需开发票,请勿充值!)
    邮箱/手机:
    温馨提示:
    如需开发票,请勿充值!快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如需开发票,请勿充值!如填写123,账号就是123,密码也是123。
    支付方式: 支付宝扫码支付    微信扫码支付   
    验证码:   换一换

    加入VIP,交流精品资源
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    2020高考数学一轮复习课时作业37合情推理与演绎推理理.doc

    1、1课时作业 37 合情推理与演绎推理基础达标一、选择题1下面说法:演绎推理是由一般到特殊的推理;演绎推理得到的结论一定是正确的;演绎推理的一般模式是“三段论”的形式;演绎推理得到结论的正确与否与大前提、小前提和推理形式有关;运用三段论推理时,大前提和小前提都不可以省略其中正确的有( )A1 个 B2 个C3 个 D4 个解析:都正确答案:C2已知扇形的弧长为 l,半径为 r,类比三角形的面积公式 S ,可推知扇底 高2形面积公式 S 扇 等于( )A. B.r22 l22C. D不可类比lr2解析:我们将扇形的弧类比为三角形的底边,则高为扇形的半径 r, S 扇 lr.12答案:C23右图所示

    2、的三角形数组是我国古代数学家杨辉发现的,称为杨辉三角形,根据图中的数构成的规律, a 所表示的数是( )A2 B4C6 D8解析:由杨辉三角形可以发现,每一行除 1 外,每个数都是它肩膀上的两数之和故a336.答案:C4根据给出的数塔猜测 1 234 56798( )192111293111123941 1111 2349511 11112 34596111 111A11 111 110 B11 111 111C11 111 112 D11 111 113解析:根据数塔的规律,后面加几结果就是几个 1,1 234 5679811 111 111.答案:B5推理过程“大前提:_,小前提:四边形

    3、ABCD 是矩形结论:四边形 ABCD的对角线相等 ”应补充的大前提是( )A正方形的对角线相等B矩形的对角线相等C等腰梯形的对角线相等D矩形的对边平行且相等解析:由三段论的一般模式知应选 B.答案:B6在等差数列与等比数列中,它们的性质有着很多类比性,若数列 an是等差数列,bn是等比数列,对于正整数 m, n, p, q,若 m n p q,则有 am an ap aq,类比此性质,则有( )A bm bn bp bq B bm bn bp bq3C bmbn bpbq D. bmbn bpbq解析:由等比数列的性质得 bmbn bpbq.答案:C72019福建检测某校有 A, B, C,

    4、 D 四件作品参加航模类作品比赛已知这四件作品中恰有两件获奖,在结果揭晓前,甲、乙、丙、丁四位同学对这四件参赛作品的获奖情况预测如下甲说:“ A, B 同时获奖 ”乙说:“ B, D 不可能同时获奖 ”丙说:“ C 获奖 ”丁说:“ A, C 至少一件获奖 ”如果以上四位同学中有且只有两位同学的预测是正确的,则获奖的作品是( )A作品 A 与作品 B B作品 B 与作品 CC作品 C 与作品 D D作品 A 与作品 D解析:若甲预测正确,则乙预测正确,丙预测错误,丁预测正确,与题意不符,故甲预测错误;若乙预测错误,则依题意丙、丁均预测正确,但若丙、丁预测正确,则获奖作品可能是“ A, C”、

    5、“B, C”、 “C, D”,这几种情况都与乙预测错误相矛盾,故乙预测正确,所以丙、丁中恰有一人预测正确若丙预测正确,丁预测错误,两者互相矛盾,排除;若丙预测错误,丁预测正确,则获奖作品只能是“ A, D”,经验证符合题意,故选 D.答案:D82019山东淄博模拟有一段“三段论”推理是这样的:对于可导函数 f(x),若f( x0)0,则 x x0是函数 f(x)的极值点,因为 f(x) x3在 x0 处的导数值为 0,所以x0 是 f(x) x3的极值点,以上推理( )A大前提错误 B小前提错误C推理形式错误 D结论正确解析:大前提是“对于可导函数 f(x),若 f( x0)0,则 x x0是

    6、函数 f(x)的极值点”,不是真命题,因为对于可导函数 f(x),如果 f( x0)0,且满足在 x0附近左右两侧导函数值异号,那么 x x0才是函数 f(x)的极值点,所以大前提错误故选 A.答案:A92019山东省潍坊市第一次模拟“干支纪年法”是中国历法上自古以来就一直使用的纪年方法,甲、乙、丙、丁、戊、己、庚、辛、壬、癸被为“十天干” ,子、丑、寅、卯、辰、巳、午、未、申、酉、戌、亥叫做“十二地支” “天干”以“甲”字开始, “地支”以“子”字开始,两者按干支顺序相配,组成了干支纪年法,其相配顺序为甲子、乙丑、丙寅、癸酉,甲戌、乙亥、丙子、癸未,甲申、乙酉、丙戌、癸巳,、4癸亥,60 个

    7、为一周周而复始,循环记录.2014 年是“干支纪年法”中的甲午年,那么 2020年是“干支纪年法”中的( )A己亥年 B戊戌年C庚子年 D辛丑年解析:由题意知 2014 年是甲午年,则 2015 到 2020 年分别为乙未年、丙申年、丁酉年、戊戌年、己亥年、庚子年答案:C102019东北三省四市联考中国有个名句“运筹帷幄之中,决胜千里之外” ,其中的“筹”原意是指孙子算经中记载的算筹古代用算筹(一根根同样长短和粗细的小棍子)来进行运算算筹的摆放有纵、横两种形式(如图所示)表示一个多位数时,个位、百位、万位数用纵式表示,十位、千位、十万位数用横式表示,以此类推,遇零则置空例如,3 266 用算筹

    8、表示就是 ,则 8 771 用算筹应表示为( )解析:由题知,个位、百位数用纵式表示,十位、千位数用横式表示,易知正确选项为 C.答案:C二、填空题112019石家庄高中毕业班模拟甲、乙、丙三位同学,其中一位是班长,一位是体育委员,一位是学习委员,已知丙比学习委员的年龄大,甲与体育委员的年龄不同,体育委员比乙的年龄小,据此推断班长是_解析:若甲是班长,由于体育委员比乙的年龄小,故丙是体育委员,乙是学习委员,但这与丙比学习委员的年龄大矛盾,故甲不是班长;若丙是班长,由于体育委员比乙的年龄小,故甲是体育委员,这和甲与体育委员的年龄不同矛盾,故丙不是班长;若乙是班长,由于甲与体育委员的年龄不同,故甲

    9、是学习委员,丙是体育委员,此时其他条件均成立,故乙是班长答案:乙122019广州市高中综合测试古希腊著名的毕达哥拉斯学派把 1,3,6,10,这样的数称为“三角形数” ,而把 1,4,9,16,这样的数称为“正方形数” 如图,可以发现任何一个大于 1 的“正方形数”都可以看成两个相邻“三角形数”之和,下列等式:361521;491831;642836;813645.其中符合这一规律的等式是5_(填写所有符合的编号)解析:因为任何一个大小 1 的“正方形数”都可以看成两个相邻“三角形数”之和,所以其规律是413,936,16610,251015,361521,492128,642836,8136

    10、45,因此给出的四个等式中,不符合这一规律,符合这一规律,故填.答案:132019湛江模拟如图,已知点 O 是 ABC 内任意一点,连接 AO, BO, CO,并延长交对边于 A1, B1, C1,则 1,类比猜想:点 O 是空间四面体 A BCD 内任OA1AA1 OB1BB1 OC1CC1意一点,连接 AO, BO, CO, DO,并延长分别交平面 BCD, ACD, ABD, ABC 于点A1, B1, C1, D1,则有_解析:猜想:若 O 为四面体 A BCD 内任意一点,连接 AO, BO, CO, DO,并延长分别交平面 BCD, ACD, ABD, ABC 于点 A1, B1,

    11、 C1, D1,则 1.用等体积法OA1AA1 OB1BB1 OC1CC1 OD1DD1证明如下: 1.OA1AA1 OB1BB1 OC1CC1 OD1DD1 VO BCDVA BCD VO CADVB CAD VO ABDVC ABD VO ABCVD ABC答案: 1OA1AA1 OB1BB1 OC1CC1 OD1DD1142019济南模拟如图,将平面直角坐标系中的格点(横、纵坐标均为整数的点)按如下规则标上标签:原点处标数字 0,记为 a0;点(1,0)处标数字 1,记为 a1;点(1,1)处标数字 0,记为 a2;点(0,1)处标数字1,记为 a3;点(1,1)处标数字2,记为 a4;

    12、点(1,0)处标数字1,记为 a5;点(1,1)处标数字 0,记为 a6;点(0,1)处标数字 1,记为 a7;以此类推,格点坐标为( i, j)的点处所标的数字为 i j(i, j均为整数),记 Sn a1 a2 an,则 S2 018_.6解析:设 an的坐标为( x, y),则 an x y.第一圈从点(1,0)到点(1,1)共 8 个点,由对称性可知 a1 a2 a80;第二圈从点(2,1)到点(2,2)共 16 个点,由对称性可知a9 a10 a240,以此类推,可得第 n 圈的 8n 个点对应的这 8n 项的和也为 0.设a2 018在第 k 圈,则 816 8 k4 k(k1),

    13、由此可知前 22 圈共有 2 024 个数,故 S2 0240,则 S2 018 S2 024( a2 024 a2 023 a2 019), a2 024所在点的坐标为(22,22), a2 0242222, a2 023所在点的坐标为(21,22), a2 0232122,以此类推,可得 a2 0222022, a2 0211922 , a2 0201822, a2 0191722,所以 a2 024 a2 023 a2 019249,故 S2 018249.答案:249能力挑战152019山西孝义模拟有编号依次为 1,2,3,4,5,6 的 6 名学生参加数学竞赛选拔赛,今有甲、乙、丙、

    14、丁四位老师在猜谁将得第一名,甲猜不是 3 号就是 5 号;乙猜 6 号不可能;丙猜 2 号,3 号,4 号都不可能;丁猜是 1 号,2 号,4 号中的某一个若以上四位老师中只有一位老师猜对,则猜对者是( )A甲 B乙C丙 D丁解析:若 1 号是第 1 名,则甲错,乙对,丙对,丁对,不符合题意;若 2 号是第 1 名,则甲错,乙对,丙错,丁对,不符合题意;若 3 号是第 1 名,则甲错,乙对,丙错,丁错,不符合题意;若 4 号是第 1 名,则甲错,乙对,丙错,丁对,不符合题意;若 5 号是第 1 名,则甲错,乙对,丙对,丁错,不符合题意;若 6 号是第 1 名,则甲错,乙错,丙对,丁错,符合题意

    15、故猜对者是丙答案:C162019南昌模拟平面内直角三角形两直角边长分别为 a, b,则斜边长为,直角顶点到斜边的距离为 .空间中三棱锥的三条侧棱两两垂直,三个侧面a2 b2aba2 b27的面积分别为 S1, S2, S3,类比推理可得底面积为 ,则三棱锥顶点到底面的距S21 S2 S23离为( )A. B.3 S1S2S3S21 S2 S23 S1S2S3S21 S2 S23C. D.2S1S2S3S21 S2 S23 3S1S2S3S21 S2 S23解析:设空间中三棱锥 O ABC 的三条两两垂直的侧棱 OA, OB, OC 的长分别为a, b, c,不妨设三个侧面的面积分别为 S OA

    16、B ab S1, S OAC ac S2, S12 12OBC bc S3,则 ab2 S1, ac2 S2, bc2 S3.12过 O 作 OD BC 于 D,连接 AD,由 OA OB, OA OC,且 OB OC O,得 OA平面 OBC,所以 OA BC,又 OA OD O,所以 BC平面 AOD,又 BC平面 OBC,所以平面 OBC平面 AOD,所以点 O 在平面 ABC 内的射影 O在线段 AD 上,连接 OO.在直角三角形 OBC 中, OD .bcb2 c2因为 AO OD,所以在直角三角形 OAD 中, OO OAODOA2 OD2a bcb2 c2a2 ( bcb2 c2

    17、)2 abc ab 2 ac 2 bc 2 ab bc ca ab 2 ac 2 bc 2 . 2S1 2S2 2S3 2S1 2 2S3 2 2S2 2 2S1S2S3S21 S2 S23答案:C172019山东省,湖北省重点中学质量检测定义两种运算“” 与“” ,对任意nN *,满足下列运算性质:(1)22 0181,2 0181 1;(2)(2 n)2 0182(2 n2)2 018,2 018( n1)2(2 018 n)则(2 0182 019)(2 0202 018)的值为( )A2 1 010 B2 1 009C2 1 008 D2 1 007解析:由(2 n)2 0182(2

    18、n2)2 018得(2 n2)2 018 (2n)2 018,又1222 0181,所以 42 018 (22 018) ,12 1262 018 (42 018) 2,12 12 12 (12)882 018 (62 018) 2 3,12 12 (12) (12)依此类推,2 0202 018(21 0092)2 018 1 009.(12)由 2 018( n1)2(2 018 n),2 01811,可得 2 01822(2 0181)2,2 01832(2 0182)222 2,2 01842(2 0183)22 22 3,依次类推,2 0182 0192 2 018,故(2 0182 019)(2 0202 018)2 2 018 1 0092 1 009.(12)答案:B


    注意事项

    本文(2020高考数学一轮复习课时作业37合情推理与演绎推理理.doc)为本站会员(eveningprove235)主动上传,麦多课文档分享仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知麦多课文档分享(点击联系客服),我们立即给予删除!




    关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

    copyright@ 2008-2019 麦多课文库(www.mydoc123.com)网站版权所有
    备案/许可证编号:苏ICP备17064731号-1 

    收起
    展开