欢迎来到麦多课文档分享! | 帮助中心 海量文档,免费浏览,给你所需,享你所想!
麦多课文档分享
全部分类
  • 标准规范>
  • 教学课件>
  • 考试资料>
  • 办公文档>
  • 学术论文>
  • 行业资料>
  • 易语言源码>
  • ImageVerifierCode 换一换
    首页 麦多课文档分享 > 资源分类 > PPT文档下载
    分享到微信 分享到微博 分享到QQ空间

    2019春九年级数学下册第二章二次函数2.5二次函数与一元二次方程第2课时利用二次函数求方程的近似根教学课件(新版)北师大版.ppt

    • 资源ID:1100694       资源大小:828.50KB        全文页数:24页
    • 资源格式: PPT        下载积分:5000积分
    快捷下载 游客一键下载
    账号登录下载
    微信登录下载
    二维码
    微信扫一扫登录
    下载资源需要5000积分(如需开发票,请勿充值!)
    邮箱/手机:
    温馨提示:
    如需开发票,请勿充值!快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如需开发票,请勿充值!如填写123,账号就是123,密码也是123。
    支付方式: 支付宝扫码支付    微信扫码支付   
    验证码:   换一换

    加入VIP,交流精品资源
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    2019春九年级数学下册第二章二次函数2.5二次函数与一元二次方程第2课时利用二次函数求方程的近似根教学课件(新版)北师大版.ppt

    1、,2.5 二次函数与一元二次方程,导入新课,讲授新课,当堂练习,课堂小结,第2课时 利用二次函数求方程的近似根,第二章 二次函数,九年级数学下(BS)教学课件,1.会用二次函数图象求一元二次方程的近似解及一元二次不等式的解集; (重点) 2.通过研究二次函数与一元二次方程的联系体会数形结合思想的应用.(难点),学习目标,问题:上节课我们学习了一元二次方程ax2+bx+c=0(a0)和二次函数y=ax2+bx+c(a0)之间的关系,那么如何利用二次函数图象直接求出一元二次方程的根呢?,导入新课,回顾与思考,例1:求一元二次方程 的近似根(精确到0.1).,分析:一元二次方程 x-2x-1=0 的

    2、根就是抛物线 y=x-2x-1 与x轴的交点的横坐标,因此我们可以先画出这条抛物线,然后从图上找出它与x轴的交点的横坐标,这种解一元二次方程的方法叫作图象法.,讲授新课,解:画出函数 y=x-2x-1 的图象(如下图),由图象可知,方程有两个实数根,一个在-1与0之间,另一个在2与3之间.,先求位于-1到0之间的根,由图象可估计这个根是-0.4或-0.5,利用计算器进行探索,见下表:,观察上表可以发现,当x分别取-0.4和-0.5时,对应的y由负变正,可见在-0.5与-0.4之间肯定有一个x使y=0,即有y=x2-2x-1的一个根,题目只要求精确到0.1,这时取x=-0.4或x=-0.5都符合

    3、要求.但当x=-0.4时更为接近0.故x1-0.4. 同理可得另一近似值为x22.4.,(1)用描点法作二次函数 y=ax2+bx+c的图象;,(2)观察估计二次函数 的图象与x轴的交点的横坐标;,(可将单位长度十等分,借助计算器确定其近似值);,(3)确定方程ax2+bx+c=0的近似根;,利用图象法求一元二次方程的近似根,1.已知二次函数yax2bxc的图象如图所示,则一元二次方程ax2bxc0的近似根为( ) Ax12.1,x20.1 Bx12.5,x20.5 Cx12.9,x20.9 Dx13,x21,解析:由图象可得二次函数yax2bxc图象的对称轴为x1,而对称轴右侧图象与x轴交点

    4、到原点的距离约为0.5,x20.5;又对称轴为x1,则 1,x12(1)0.52.5.故x12.5,x20.5.故选B.,B,针对训练,解答本题首先需要根据图象估计出一个根,再根据对称性计算出另一个根,估计值的精确程度,直接关系到计算的准确性,故估计尽量要准确,例2:求一元二次方程 的近似根(精确到0.1).,分析:令y=x-2x-1-3=x-2x-4,则x-2x-1=3的根就是抛物线 y=x-2x-4 与x轴的交点的横坐标,因此我们可以先画出这条抛物线,然后从图上找出它与x轴的交点的横坐标.,解:y=x-2x-4的图象如图所示.,解:由图象可知方程的一根在3到 4之间,另一根在-1到-2之间

    5、. (1)先求3到4之间的根.利用计算器进行探索:,因此,x=3.2是方程的一个近似根. (2)可类似地求出另一个根为x=-1.2.,例2变式:你还能利用y=x-2x-1 的图象求一元二次方程 的近似根吗(精确到0.1)?,分析:在y=x-2x-1的图象中作直线y=3,再用图象法求出直线与抛物线交点的横坐标,则横坐标的近似值即为所求方程的近似根.,y=3,一元二次方程ax2+bx+c=m的根就是二次函数y=ax2+bx+c 与直线y=m(m是实数)图象交点的横坐标 .,既可以用求根公式求二次方程的根,也可以通过画二次函数图象来估计一元二次方程的根.,问题1 函数y=ax2+bx+c的图象如图,

    6、那么 方程ax2+bx+c=0的根是 _ _; 不等式ax2+bx+c0的解集 是_; 不等式ax2+bx+c0的解集 是_.,y,x1=-1, x2=3,x3,-1x3,合作探究,拓广探索:,函数y=ax2+bx+c的图象如图,那么 方程ax2+bx+c=2的根是 _; 不等式ax2+bx+c2的解集是_; 不等式ax2+bx+c2的解集是_.,3,-1,O,x,2,(4,2),(-2,2),x1=-2, x2=4,x4,-2x4,y,问题2,如果不等式ax2+bx+c0(a0)的解集是x2 的一切实数,那么函数y=ax2+bx+c的图象与 x轴有_ 个交点,坐标是_.方程ax2+bx+c=

    7、0的根是_.,1,(2,0),x=2,问题3,如果方程ax2+bx+c=0 (a0)没有实数根,那么函数y=ax2+bx+c的图象与 x轴有_个交点;不等式ax2+bx+c0的解集是多少?,0,解:(1)当a0时, ax2+bx+c0无解;,(2)当a0时, ax2+bx+c0的解集是一切实数.,试一试:利用函数图象解下列方程和不等式: (1) -x2+x+2=0; -x2+x+20;-x2+x+20;x2-4x+40;-x2+x-20.,x1=-1 , x2=2,-1 x2,x1-1 , x22,y=x2-4x+4,x=2,x2的一切实数,x无解,y=-x2+x-2,x无解,x无解,x为全体

    8、实数,要点归纳,有两个交点x1,x2 (x1x2),有一个交点x0,没有交点,二次函数y=ax2+bx+c的图象与x轴交点的坐标与一元二次不等式的关系,y0,x1xx2. y0,x2x或xx1,y0,x1xx2. y0,x2x或xx1,y0,x0之外的所有实数;y0,无解,y0,x0之外的所有实数;y0,无解,y0,所有实数;y0,无解,y0,所有实数;y0,无解,判断方程 ax2+bx+c =0 (a0,a,b,c为常数)一个解x的范围是( )A. 3 x 3.23 B. 3.23 x 3.24C. 3.24 x 3.25 D. 3.25 x 3.26,C,1.根据下列表格的对应值:,当堂练

    9、习,2.小颖用计算器探索方程ax2+bx+c=0的根,作出如图所示的图象,并求得一个近似根x=-3.4,则方程的另一个近似根(精确到0.1)为( ) A4.4 B3.4 C2.4 D1.4,D,3.用图象法求一元二次方程 的近似根(精确到0.1).,解:画出x2+x-1=0的图象,如图所示,由图象知,方程有两个根,一个在-2和-1之间,另一个在0到1之间.通过计算器估算,可得到抛物线与x轴交点的横坐标大约为 -1.6和0.6.即一元二次方程的实数根为x1-1.6,x20.6.,4.已知二次函数 的图象,利用图象回答问题:(1)方程 的解是什么?(2)x取什么值时,y0 ?(3)x取什么值时,y0 ?,解:(1)x1=2,x2=4;,(2)x4;,(3)2x4.,课堂小结,二次函数图象,由图象与x轴的交点位置, 判断方程根的近似值,一元二次方程的根,一元二次不等式的解集,


    注意事项

    本文(2019春九年级数学下册第二章二次函数2.5二次函数与一元二次方程第2课时利用二次函数求方程的近似根教学课件(新版)北师大版.ppt)为本站会员(twoload295)主动上传,麦多课文档分享仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知麦多课文档分享(点击联系客服),我们立即给予删除!




    关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

    copyright@ 2008-2019 麦多课文库(www.mydoc123.com)网站版权所有
    备案/许可证编号:苏ICP备17064731号-1 

    收起
    展开