欢迎来到麦多课文档分享! | 帮助中心 海量文档,免费浏览,给你所需,享你所想!
麦多课文档分享
全部分类
  • 标准规范>
  • 教学课件>
  • 考试资料>
  • 办公文档>
  • 学术论文>
  • 行业资料>
  • 易语言源码>
  • ImageVerifierCode 换一换
    首页 麦多课文档分享 > 资源分类 > PPT文档下载
    分享到微信 分享到微博 分享到QQ空间

    2019春九年级数学下册第一章直角三角形的边角关系1.1锐角三角函数第2课时正弦与余弦教学课件(新版)北师大版.ppt

    • 资源ID:1100665       资源大小:2.14MB        全文页数:30页
    • 资源格式: PPT        下载积分:5000积分
    快捷下载 游客一键下载
    账号登录下载
    微信登录下载
    二维码
    微信扫一扫登录
    下载资源需要5000积分(如需开发票,请勿充值!)
    邮箱/手机:
    温馨提示:
    如需开发票,请勿充值!快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如需开发票,请勿充值!如填写123,账号就是123,密码也是123。
    支付方式: 支付宝扫码支付    微信扫码支付   
    验证码:   换一换

    加入VIP,交流精品资源
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    2019春九年级数学下册第一章直角三角形的边角关系1.1锐角三角函数第2课时正弦与余弦教学课件(新版)北师大版.ppt

    1、,1.1 锐角三角函数,第一章 直角三角形的边 角关系,导入新课,讲授新课,当堂练习,课堂小结,第2课时 正弦与余弦,1.理解并掌握锐角正弦、余弦的定义,并进行相关计 算;(重点、难点) 2.在直角三角形中求正弦值、余弦值. (重点),学习目标,导入新课,复习引入,1.分别求出图中A,B的正切值.,2.如图,在RtABC中,C90,当锐角A确定时,A的对边与邻边的比就随之确定.想一想,此时,其他边之间的比是否也确定了呢?,任意画RtABC 和RtABC,使得CC90,AA,那么 与 有什么关系你能试着分析一下吗?,讲授新课,合作探究,在图中,由于CC90,AA,所以ABCABC,这就是说,在直

    2、角三角形中,当锐角A的度数一定时,不管三角形的大小如何,A的对边与斜边的比也是一个固定值,A的对边与斜边的比叫做A的正弦(sine),记作sinA , 即,c,a,b,对边,斜边,概念学习,典例精析,例1 如图,在RtABC中,B=90,AC=200,sinA=0.6,求BC的长.,解: 在RtABC中,,即, BC=2000.6=120.,变式:在RtABC中,C=90,BC=20, 求:ABC的周长和面积.,解: 在RtABC中,合作探究,任意画RtABC 和RtABC,使得CC90,AA,那么 与 有什么关系你能试着分析一下吗?,在图中,由于CC90,AA,所以ABCABC,这就是说,在

    3、直角三角形中,当锐角A的度数一定时,不管三角形的大小如何,A的邻边与斜边的比也是一个固定值,A的邻边与斜边的比叫做A的余弦(cosine),记作cosA,即,c,a,b,对边,斜边,概念学习,锐角A的正弦、余弦和正切都是A的三角函数(trigonometric function).当锐角A变化时,相应的正弦、余弦和正切值也随之变化.,定义中应该注意的几个问题:,1.sinA,cosA是在直角三角形中定义的,A是锐角(注意数形结合,构造直角三角形). 2.sinA,cosA是一个完整的符号,分别表示A的正弦,余弦 (习惯省去“”号). 3.sinA,cosA 是一个比值.注意比的顺序.且sinA

    4、,cosA均0,无单位. 4.sinA,cosA的大小只与A的大小有关,而与直角三角形的边长无关. 5.角相等,则其三角函数值相等;两锐角的三角函数值相等,则这两个锐角相等.,例2:如图:在等腰ABC中,AB=AC=5,BC=6. 求: sinB,cosB,tanB.,提示:过点A作ADBC于D.,如图,梯子的倾斜程度与sinA和cosA有关系吗?,A,sinA的值越大,梯子越 _ ; cosA的值越 _ ,梯子越陡.,陡,小,A,议一议,例3:在RtABC中,C=90,如图,已知AC=3,AB=6, 求sinA和cosB.,想一想:我们发现sinA=cosB,其中有没有什么内在的联系?,求:

    5、AB,sinB.,变式:如图:在RtABC中,C=90,AC=10,思考:我们再次发现sinA=cosB,其中的内在联系你可否掌握?,如图:在Rt ABC中,C90,,要点归纳,sinA=cosB,2.在RtABC中,C=90,sinA= ,则tanB的值为_.,针对训练,1.在RtABC中,C=90,则下列式子一定成立的是( ) AsinA=sinB BcosA=cosB CtanA=tanB DsinA=cosB,D,1.如图,在RtABC中,锐角A的对边和邻边同时扩大100倍,sinA的值( ) A.扩大100倍 B.缩小100倍 C.不变 D.不能确定,2.已知A,B为锐角 (1)若A

    6、=B,则sinA sinB; (2)若sinA=sinB,则A B.,C,=,=,当堂练习,3.如图, C=90CDAB.,4.在上图中,若BD=6,CD=12.则cosA=_.,( ) ( ) ( ),( ) ( ) ( ),CDBC,ACAB,ADAC,5.如图:P是边OA上一点,且P点的坐标为(3,4),则cos =_,tan =_.,3,4,P,A,6. 如图,在RtABC中,C90,AB =10,BC6,求sinA、cosA、tanA的值,解:,又,10,变式1:如图,在RtABC中,C90, cosA ,求sinA、tanA的值,解:,设AC=15k,则AB=17k,变式2:如图,

    7、在RtABC中,C90,AC8,tanA ,求sinA、cosB的值,A,B,C,8,解:,7如图,在正方形ABCD中,M是AD的中点,BE=3AE,求sinECM.,解:设正方形ABCD的边长为4x,M是AD的中点,BE=3AE, AMDM2x,AEx,BE3x 由勾股定理可知,,7如图,在正方形ABCD中,M是AD的中点,BE=3AE,求sinECM.,由勾股定理逆定理可知,EMC为直角三角形.,8如图,在平面直角坐标系内,O为原点,点A的坐标为(10,0),点B在第一象限内,BO=5,sinBOA,(1)求点B的坐标;(2)求cosBAO的值,A,B,H,解:(1)如图所示,作BHOA, 垂足为H在RtOHB中, BO5,sinBOA ,BH=3,OH4,,点B的坐标为(4,3),8如图,在平面直角坐标系内,O为原点,点A的坐标为(10,0),点B在第一象限内,BO=5,sinBOA,(2)求cosBAO的值,A,B,H,(2)OA10,OH4, AH6 在RtAHB中,BH=3,,1.在RtABC中,课堂小结,2.梯子的倾斜程度与sinA和cosA的关系:,sinA的值越大,梯子越陡; cosA的值越小,梯子越陡.,


    注意事项

    本文(2019春九年级数学下册第一章直角三角形的边角关系1.1锐角三角函数第2课时正弦与余弦教学课件(新版)北师大版.ppt)为本站会员(confusegate185)主动上传,麦多课文档分享仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知麦多课文档分享(点击联系客服),我们立即给予删除!




    关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

    copyright@ 2008-2019 麦多课文库(www.mydoc123.com)网站版权所有
    备案/许可证编号:苏ICP备17064731号-1 

    收起
    展开