欢迎来到麦多课文档分享! | 帮助中心 海量文档,免费浏览,给你所需,享你所想!
麦多课文档分享
全部分类
  • 标准规范>
  • 教学课件>
  • 考试资料>
  • 办公文档>
  • 学术论文>
  • 行业资料>
  • 易语言源码>
  • ImageVerifierCode 换一换
    首页 麦多课文档分享 > 资源分类 > DOC文档下载
    分享到微信 分享到微博 分享到QQ空间

    2020版高考数学大一轮复习第八章立体几何初步第6讲平行、垂直的综合问题分层演练文.doc

    • 资源ID:1097640       资源大小:2.34MB        全文页数:8页
    • 资源格式: DOC        下载积分:2000积分
    快捷下载 游客一键下载
    账号登录下载
    微信登录下载
    二维码
    微信扫一扫登录
    下载资源需要2000积分(如需开发票,请勿充值!)
    邮箱/手机:
    温馨提示:
    如需开发票,请勿充值!快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如需开发票,请勿充值!如填写123,账号就是123,密码也是123。
    支付方式: 支付宝扫码支付    微信扫码支付   
    验证码:   换一换

    加入VIP,交流精品资源
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    2020版高考数学大一轮复习第八章立体几何初步第6讲平行、垂直的综合问题分层演练文.doc

    1、1第 6 讲 平行、垂直的综合问题1.如图,边长为 a 的等边三角形 ABC 的中线 AF 与中位线 DE 交于点 G,已知 A DE 是 ADE 绕 DE 旋转过程中的一个图形,则下列命题中正确的是( )动点 A在平面 ABC 上的射影在线段 AF 上; BC平面 A DE;三棱锥 A FED 的体积有最大值A B.C D解析:选 C.中由已知可得平面 A FG平面 ABC,所以点 A在平面 ABC 上的射影在线段 AF 上 BC DE,根据线面平行的判定定理可得 BC平面 A DE.当平面 A DE平面 ABC 时,三棱锥 A FED 的体积达到最大,故选 C.2如图所示,四边形 ABCD

    2、 中, AD BC, AD AB, BCD45, BAD90.将ADB 沿 BD 折起,使平面 ABD平面 BCD,构成三棱锥 ABCD,则在三棱锥 ABCD 中,下列结论正确的是( )A平面 ABD平面 ABCB平面 ADC平面 BDCC平面 ABC平面 BDCD平面 ADC平面 ABC解析:选 D.因为在四边形 ABCD 中, AD BC, AD AB, BCD45, BAD90,所以 BD CD.又平面 ABD平面 BCD,且平面 ABD平面 BCD BD,故 CD平面 ABD,则 CD AB.2又 AD AB, AD CD D, AD平面 ADC, CD平面 ADC,故 AB平面 AD

    3、C.又 AB平面 ABC,所以平面 ADC平面 ABC.3如图,四边形 ABCD 中, AB AD CD1, BD , BD CD.将四边形 ABCD 沿对角线2BD 折成四面体 A BCD,使平面 A BD平面 BCD,则下列结论正确的是( )A A C BDB BA C90C CA与平面 A BD 所成的角为 30D四面体 A BCD 的体积为13解析:选 B.若 A 成立可得 BD A D,产生矛盾,故 A 不正确;由题设知: BA D 为等腰 Rt, CD平面 A BD,得 BA平面 A CD,于是 B 正确;由 CA与平面 A BD 所成的角为 CA D45知 C 不正确;VA BC

    4、D VCA BD ,D 不正确故选 B.164在直角梯形 ABCD 中, AB2, CD CB1, ABC90,平面 ABCD 外有一点 E,平面 ADE平面 ABCD, AE ED1.(1)求证: AE BE;(2)求点 C 到平面 ABE 的距离解:(1)证明:在直角梯形 ABCD 中, BD , AD ,又 AD BC2 CD2 2 2 2,所以 AE ED.AE2 ED2因为 AB2 AD2 BD2,所以 AD BD,因为平面 ADE平面 ABCD,且交线为 AD, AD BD.所以 BD平面 ADE.因为 AE平面 ADE,所以 BD AE.因为 AE BD, AE ED, BD D

    5、E D,所以 AE平面 BDE,因为 BE平面 BDE,所以 AE BE.3(2)如图,过点 E 作 EM AD,交 AD 于 M.因为平面 ADE平面 ABCD,所以 EM平面 ABCD.设点 C 到平面 ABE 的距离为 h,EM , S ABC ABBC 211,22 12 12S ABE EBAE 1 .12 12 3 32因为 VEABC VCABE,所以 1 h,所以 h ,13 22 13 32 63所以点 C 到平面 ABE 的距离为 .635(2019太原模拟)如图,在几何体 ABCDFE 中,四边形 ABCD 是菱形, BE平面ABCD, DF BE,且 DF2 BE2,

    6、EF3.(1)证明:平面 ACF平面 BEFD.(2)若 cos BAD ,求几何体 ABCDFE 的体积15解:(1)证明:因为四边形 ABCD 是菱形,所以 AC BD,因为 BE平面 ABCD,所以 BE AC.所以 AC平面 BEFD.所以平面 ACF平面 BEFD.(2)设 AC 与 BD 的交点为 O, AB a(a0),由(1)得 AC平面 BEFD,因为 BE平面 ABCD,所以 BE BD,4因为 DF BE,所以 DF BD,所以 BD2 EF2( DF BE)28,所以 BD2 ,2所以 S 四边形 BEFD (BE DF)BD3 ,12 2因为 cos BAD ,所以

    7、BD2 AB2 AD22 ABADcos BAD a28,15 85所以 a ,5所以 OA2 AB2 OB23,所以 OA ,3所以 VABCDFE2 VABEFD S 四边形 BEFDOA2 .23 66(2017高考全国卷)如图,四面体 ABCD 中, ABC 是正三角形, AD CD.(1)证明: AC BD;(2)已知 ACD 是直角三角形, AB BD.若 E 为棱 BD 上与 D 不重合的点,且 AE EC,求四面体 ABCE 与四面体 ACDE 的体积比解:(1)证明:取 AC 的中点 O,连接 DO, BO.因为 AD CD,所以 AC DO.又由于 ABC 是正三角形,所以

    8、 AC BO.从而 AC平面 DOB,故 AC BD.(2)连接 EO.由(1)及题设知 ADC90,所以 DO AO.在 Rt AOB 中, BO2 AO2 AB2.又 AB BD,所以BO2 DO2 BO2 AO2 AB2 BD2,故 DOB90.由题设知 AEC 为直角三角形,所以 EO AC.12又 ABC 是正三角形,且 AB BD,所以 EO BD.125故 E 为 BD 的中点,从而 E 到平面 ABC 的距离为 D 到平面 ABC 的距离的 ,四面体 ABCE12的体积为四面体 ABCD 的体积的 ,即四面体 ABCE 与四面体 ACDE 的体积之比为 11.121(2019郑

    9、州第二次质量检测)如图,高为 1 的等腰梯形 ABCD 中,AM CD AB1, M 为 AB 的三等分点现将 AMD 沿 MD 折起,使平面 AMD平面 MBCD,连13接 AB, AC.(1)在 AB 边上是否存在点 P,使 AD平面 MPC?(2)当点 P 为 AB 边的中点时,求点 B 到平面 MPC 的距离解:(1)当 AP AB 时,有 AD平面 MPC.13理由如下:连接 BD 交 MC 于点 N,连接 NP.在梯形 MBCD 中, DC MB, ,DNNB DCMB 12因为 ADB 中, ,所以 AD PN.APPB 12因为 AD平面 MPC, PN平面 MPC,所以 AD

    10、平面 MPC.(2)因为平面 AMD平面 MBCD,平面 AMD平面 MBCD DM,平面 AMD 中 AM DM,所以 AM平面 MBCD.所以 VPMBC S MBC 21 .13 AM2 13 12 12 16在 MPC 中, MP AB , MC ,12 52 2又 PC ,所以 S MPC .( 12) 2 12 52 12 2 ( 52) 2 ( 22) 2 646所以点 B 到平面 MPC 的距离为 d .3VPMBCS MPC31664 632.如图所示,已知长方体 ABCDA1B1C1D1,点 O1为 B1D1的中点(1)求证: AB1平面 A1O1D.(2)若 AB AA1

    11、,在线段 BB1上是否存在点 E 使得 A1C AE?若存在,求出 ;若不存23 BEBB1在,说明理由解:(1)证明:如图所示,连接 AD1交 A1D 于点 G,所以 G 为 AD1的中点连接 O1G.在 AB1D1中,因为 O1为 B1D1的中点,所以 O1G AB1.因为 O1G平面 A1O1D,且 AB1平面 A1O1D,所以 AB1平面 A1O1D.(2)若在线段 BB1上存在点 E 使得 A1C AE,连接 A1B 交 AE 于点 M.因为 BC平面 ABB1A1, AE平面 ABB1A1,所以 BC AE.又因为 A1C BC C,且 A1C, BC平面 A1BC,所以 AE平面

    12、 A1BC.因为 A1B平面 A1BC,所以 AE A1B.在 AMB 和 ABE 中, BAM ABM90, BAM BEA90,所以 ABM BEA.所以 Rt ABERt A1AB,7所以 .BEAB ABAA1因为 AB AA1,23所以 BE AB BB1,23 49即在线段 BB1上存在点 E 使得 A1C AE,此时 .BEBB1 493(2019福建质量检测)在如图所示的多面体中,四边形 ABCD 是平行四边形,四边形 BDEF 是矩形(1)求证: AE平面 BCF;(2)若 AD DE, AD DE1, AB2, BAD60,求三棱锥 FAEC 的体积解:(1)证明:因为四边

    13、形 ABCD 是平行四边形,所以 AD BC.又 AD平面 BCF, BC平面 BCF,所以 AD平面 BCF,因为四边形 BDEF 是矩形,所以DE BF.又 DE平面 BCF, BF平面 BCF,所以 DE平面 BCF.因为 AD DE D, AD平面 ADE, DE平面 ADE,所以平面 ADE平面 BCF.因为 AE平面 ADE,所以 AE平面 BCF.(2)设 AC 与 BD 交于点 O,则 O 为 AC 的中点连接 OE, OF,如图故 VFAEC VCAEF2 VOAEF2 VAOEF.在 ABD 中, BAD60, AD1, AB2,由余弦定理得, BD2 AB2 AD22 ABADcos BAD,所以 BD ,38所以 AB2 AD2 BD2,所以 AD BD.又 DE AD, BD DE D, BD平面 BDEF, DE平面 BDEF,所以 AD平面 BDEF,故 AD 的长为点 A 到平面 BDEF 的距离因为 DE1,所以 S OEF S 四边形 BDEF BDDE ,所以 VAOEF S OEFAD ,12 12 32 13 36故 VFAEC2 VAOEF ,即三棱锥 FAEC 的体积为 .33 33


    注意事项

    本文(2020版高考数学大一轮复习第八章立体几何初步第6讲平行、垂直的综合问题分层演练文.doc)为本站会员(figureissue185)主动上传,麦多课文档分享仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知麦多课文档分享(点击联系客服),我们立即给予删除!




    关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

    copyright@ 2008-2019 麦多课文库(www.mydoc123.com)网站版权所有
    备案/许可证编号:苏ICP备17064731号-1 

    收起
    展开