欢迎来到麦多课文档分享! | 帮助中心 海量文档,免费浏览,给你所需,享你所想!
麦多课文档分享
全部分类
  • 标准规范>
  • 教学课件>
  • 考试资料>
  • 办公文档>
  • 学术论文>
  • 行业资料>
  • 易语言源码>
  • ImageVerifierCode 换一换
    首页 麦多课文档分享 > 资源分类 > DOCX文档下载
    分享到微信 分享到微博 分享到QQ空间

    2019高考数学三轮冲刺大题提分大题精做13函数与导数:参数与分类讨论理.docx

    • 资源ID:1079774       资源大小:2.14MB        全文页数:9页
    • 资源格式: DOCX        下载积分:2000积分
    快捷下载 游客一键下载
    账号登录下载
    微信登录下载
    二维码
    微信扫一扫登录
    下载资源需要2000积分(如需开发票,请勿充值!)
    邮箱/手机:
    温馨提示:
    如需开发票,请勿充值!快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如需开发票,请勿充值!如填写123,账号就是123,密码也是123。
    支付方式: 支付宝扫码支付    微信扫码支付   
    验证码:   换一换

    加入VIP,交流精品资源
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    2019高考数学三轮冲刺大题提分大题精做13函数与导数:参数与分类讨论理.docx

    1、1大题精做 13 函数与导数:参数与分类讨论2019揭阳毕业已知函数 1ekxf( R, 0k) (1)讨论函数 fx的单调性;(2)当 时, lnfk,求 k的取值范围【答案】 (1)见解析;(2) 0或 1e【解析】 (1) 22e1ekxkxkxkxf ,若 0k,当 ,xk时, 0fx, f在 2,k上单调递增;当 2,xk时, f, f在 2,k上单调递减若 0,当 2,xk时, 0fx, fx在 2,k上单调递减;当 2,xk时, f, f在 2,k上单调递增 当 0时, fx在 2,k上单调递增,在 ,上单调递减;当 k时, f在 ,上单调递减,在 2,k上单调递增(2) 1ln

    2、exfk,当 0时 ,上不等式成立,满足题设条件;当 k时, 1lnexfk,等价于 1l0enxk,设 lexg,则 22exxkg,设 21xhk,则 10xh, x在 1,上单调递减,得 exk当 e0k,即 ek时,得 0h, g,2 gx在 1,上单调递减,得 10gx,满足题设条件;当 e0k,即 1ek时, h,而 2ehk, 01,2x, 0hx,又 h单调递减,当 01,x, h,得 0gx, gx在 01,上单调递增,得 1g,不满足题设条件;综上所述 , k或 e12019周口调研已知函数 2lnfxaxaR(1)求函数 fx的单调区间;(2)若对任意 0,,函数 fx的

    3、图像不在 x轴上方,求 a的取值范围322019济南期末已知函数 e1xxfa(1 )若曲线 yfx在点 1,处切线的斜率为 1,求实数 a的值;(2)当 0,x时, 0f恒成立,求实数 a的取值范围32019漳州一模已知函数 1lnfxax(1)求 fx在 1,上的最值;(2)设 fg,若当 01a,且 0x时, gxm,求整数 的最小值41 【答案】 (1)见解析;(2) 1,【解析】 (1)函数 fx的定义域为 0,,22112 xaxaxfxa 5当 2a时, 0fx恒成立,函数 fx的单调递增区间为 0,;当 时,由 ,得 12a或 (舍去) ,则由 0fx,得 x;由 0fx,得

    4、12xa,所以 f的单调递增区间为 10,2a,单调递减区间为 ,(2)对任意 0,x,函数 fx的图像不在 x轴上方, 等价于对任意 0,x,都有 0fx恒成立,即在 ,上 maxf由(1)知,当 2时, f在 0,上是增函数,又 10fa,不合题意;当 2时, fx在 2a处取得极大值也是最大值,所以 max11ln2ff a令 l22ufa ,所以 21uaa 在 ,上, 0u, 是减函数又 10u,所以要使得 max0f,须 0ua,即 1故 a的取值 范 围为 1,2 【答案】 (1) 2a;(2) 【解析】 (1) eexxfa,因为 1fa ,所以 2(2) eexxf ,设 e

    5、1exxga,设 12xx xgaa ,设 2h,注意到 0f, 0fg,()当 2a时, 2hxa在 0,上恒成立,所以 0gx在 ,上恒成立,所以 gx在 ,上是增函数,所以 20a,所以 0f在 ,上恒成立,6所以 fx在 0,上是增函数,所以 ff在 ,上恒成立,符合题意;()当 2a时, 02ha, 20h,所以 0,xa,使得 0hx,当 0,x时, x,所以 gx,所以 g在 ,上是减函数,所以 f在 0,上是减函数,所以 2fxfa ,所以 fx在 0,上是减函数,所以 0ff,不符合题意;综上所述 2a3 【答案】 (1)详见解析;(2)2【解析】解法一:(1) 1lnfxa

    6、x , 1,,当 0a时,因为 l0f,所以 fx在 ,上单调递减,所以 max10f,无最小值当 时,令 0fx,解得1eax, fx在1,ea上单调递减;令 f,解得1a, f在1,a上单调递增;所以 11mineaafxf, 无最大值当 a时,因为 1ln0fxx,等号仅在 1a, x时成立,所以 f在 ,上单调递增,所以 min10fxf,无最大值综上, 当 a时, maxf,无最小值;当 10a时, 1mineafx,无最大值;当 1时, in0,无最大值(2) l1gx,7当 1x时,因为 01a,由(1)知 0fx,所以 0gx(当 1时等号成立) ,所以 0m当 0时,因为 ,

    7、所以 1ln,所以 lnx,令 ln1xh, 0,1x,已知化为 hxm在 0,1上恒成立,因为 23l,令 lnkxx, 0,1,则 10kx, kx在 0,1上单调递减,又因为 441e, 33e,所以存在 043,x使得 00lnkxx,当 0时, h, , h在 0,上单调递增;当 x时, x, 0x, x在 ,上单调递减;所以 20000 00 0max 131ln1xh x ,因为 043e,,所以 043,ex,所以 43max,eh,所以 的最小整数值为 2解法二:(1)同解法一(2) 1lnxag,当 x时,因 0为,由(1)知 0fx,所以 0gx,所以 0m,当 1时,因为 a, 1lnf,所以 1lnx,令 lnxh, 0,x,已知化为 hxm在 0,上恒成立,因为 3321,e在 ,1上,所以 2,下面证明 2hx,即证 3ln0x在 ,1x上恒成立,令 31lnt, ,1,8则 4lntx,令 0tx,得,当 4e10,时, t, t在区间 410,e上递减;当 4,x时, 0tx, t在区间 4,上递增,所以 4e1t,且 4410et,所以当 0,x时, tx,即 2hx由得当 时, g,所以 m的最小整数值为 29


    注意事项

    本文(2019高考数学三轮冲刺大题提分大题精做13函数与导数:参数与分类讨论理.docx)为本站会员(medalangle361)主动上传,麦多课文档分享仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知麦多课文档分享(点击联系客服),我们立即给予删除!




    关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

    copyright@ 2008-2019 麦多课文库(www.mydoc123.com)网站版权所有
    备案/许可证编号:苏ICP备17064731号-1 

    收起
    展开