欢迎来到麦多课文档分享! | 帮助中心 海量文档,免费浏览,给你所需,享你所想!
麦多课文档分享
全部分类
  • 标准规范>
  • 教学课件>
  • 考试资料>
  • 办公文档>
  • 学术论文>
  • 行业资料>
  • 易语言源码>
  • ImageVerifierCode 换一换
    首页 麦多课文档分享 > 资源分类 > DOC文档下载
    分享到微信 分享到微博 分享到QQ空间

    2019届高考数学二轮复习第一篇考点三三角函数与解三角形考查角度2三角函数图象与性质的应用突破训练文.doc

    • 资源ID:1078455       资源大小:4.25MB        全文页数:13页
    • 资源格式: DOC        下载积分:2000积分
    快捷下载 游客一键下载
    账号登录下载
    微信登录下载
    二维码
    微信扫一扫登录
    下载资源需要2000积分(如需开发票,请勿充值!)
    邮箱/手机:
    温馨提示:
    如需开发票,请勿充值!快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如需开发票,请勿充值!如填写123,账号就是123,密码也是123。
    支付方式: 支付宝扫码支付    微信扫码支付   
    验证码:   换一换

    加入VIP,交流精品资源
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    2019届高考数学二轮复习第一篇考点三三角函数与解三角形考查角度2三角函数图象与性质的应用突破训练文.doc

    1、1考查角度 2 三角函数图象与性质的应用分类透析一 三角函数的图象及变换例 1 (1)函数 y=Asin(x+ ) 的部分图象如图所示,则该函数解析式为 . (2)将函数 y=sin(2x+ )(0 0)在 上是增函数 ,则 的取值范围是( ).2,23A.(0,1 B.34,+)C.1,+ ) D.解析 (1)f(x)=sin x(sin x- cos x)=sin2x- sin xcos x= - sin 2x= -sin ,(2+6)将其图象向左平移 个单位长度后,得到函数 g(x)= -sin 2 x+ + = -sin6的图象 ,则当 x= 时,函数 y=g(x)取得最小值,故选 C

    2、.(2)f(x)=4sin x sin2 +cos 2x- 1=2sin x +cos 2x- 11(+2)=2sin x+ 2sin2x+ cos 2x- 1=2sin x ,所以函数 f(x)的一个单调递增区间为 .2,2因为该函数在 上是增函数,2,23所以 ,2,23 2,23即 1,34.又 0,所以 0 0,0 )是 R上的偶函数,其图象关于点 M 对称,且在区间 上单调递减,则 的值为 . (34,0) 8,2解析 由 f(x)为偶函数得 f(0)=sin = 1,所以 =k + ,kZ .2又因为 0 ,所以 = .2又函数 f(x)的图象关于点 M 对称,所以 f(34,0)

    3、 346=sin =cos =0.34由 0,得 =k + ,k=0,1,即 = (2k+1),k=0,1,.34 2当 k=0时, = ,f(x)=sin 在区间 上是减函数;8,2当 k=1时, = 2,f(x)=sin 在区间 上是减函数;(2+2) 8,2当 k2 时, ,f(x)=sin 在区间 上不是单调函数 .103 8,2综上, = 或 = 2.答案 或 25.(2018年全国 卷,理 16改编)设当 x= 时,函数 f(x)=sin x-3cos x取得最大值,则 cos = . 解析 (法一) f(x)=sin x-3cos x= sin(x- ),其中锐角 满足 cos

    4、= ,sin 10= .当 x=2k + + (kZ)时, f(x)=sin x-3cos x取得最大值 ,所以 = 2k + + (kZ),2 2从而 cos = cos =-sin =- .(法二) f(x)=cos x+3sin x,依题设得 f( )=0,即 cos + 3sin = 0.又 sin -3cos = ,所以 cos =- .10答案 -1.(2018年佛山市质检)函数 y=sin +cos 2x- 的最小正周期和振幅分别是( ).(2+6) 3A., B.,2C.2,1 D.2,解析 y=sin +cos =sin 2x+ +sin =2sin ,(2+6) (23)

    5、6 (2+6)T= =,振幅为 2,故选 B.22答案 B72.(2018年南平市质检)已知函数 f(x)=sin(x+ )( 0)的图象的一个对称中心为 ,(2,0)且 f = ,则 的最小值为( ).(4)A. B.1 C. D.2解析 要使 取得最小值,则最小正周期 T应取最大值,故可令 += , += ,2 4 56得 = ,解得 = .故选 A.4 6答案 A3.(2018年长春十一中、东北师大附中、吉林一中、重庆一中联合模拟)将函数 f(x)=2cos图象上所有点的横坐标缩短到原来的 (纵坐标不变),得到函数 y=g(x)的图象,则函数 y=g(x)的图象的一个对称中心是( ).A

    6、. B.(1112,0) (6,0)C. D.(512,0)解析 由题意得 g(x)=2cos ,则该函数图象的对称中心的横坐标满足(2+6)2x+ = +k, kZ,即 x= + ,kZ .当 k=0时,对称中心为 .故选 B.62 6 (6,0)答案 B4.(2018年乌鲁木齐质检)已知 为函数 f(x)=sin(2x+ ) 的零点,则函数 f(x)的3 (0 0,0 0),其图象的一条对称轴在区间内,且 f(x)的最小正周期大于 ,则 的取值范围为( ).10A. B.(0,2)C.(1,2) D.1,2)解析 由题意得 f(x)= sin x+ cos x= 2sin x+ ( 0).

    7、6令 x+ = +k, kZ,得 x= + ,kZ .62 3 该函数图象的一条对称轴在区间 内, ,解得 0 0)个单位长度,再把所得图象各点的横坐标缩短到原来的 ,纵坐标不变,得到 f(x)的图象 .若 f(x) 对 xR 恒|(6)|成立,且 f f(), f( )= ,则 的可能取值为( ).(2)A. B. C. D.34 6解析 由题意可得 f(x)=sin(2x+ ),f (x) 对 xR 恒成立,|(6)|f 是 f(x)的最大值或最小值,(6) 2 +=k + ,kN,故 =k + ,kN .6 2 6又 f f(), sin sin(2 + ),即 -sin sin , s

    8、in 0,若 f(x)在区间 上单调,且 f6,2=f =-f ,则 f(x)的最小正周期为 . (2) (23) (6)解析 由 f(x)在区间 上单调,得 - = = ,解得 00, 0)的部分图象如图所示,则 f(1)+f(2)+f(3)+f(18)的值为 . 解析 由图知 A=2, =6-2,T= 8,= = .2 28 4 2sin =2,(42+) += +2k( kZ), = 2k( kZ),2 2f (x)=2sin ,f (1)+f(2)+f(3)+f(18)=2f(1)+2f(2)+2f(8)+f(1)+f(2)=f(1)+f(2)= +2.答案 +215.(2018届昆明

    9、模拟)把函数 y=sin 2x的图象沿 x轴向左平移 个单位长度,纵坐标伸长到6原来的 2倍(横坐标不变)后得到函数 y=f(x)的图象,对于函数 y=f(x)有以下四个判断: 该函数的解析式为 y=2sin ;(2+6) 该函数图象关于点 对称;(3,0) 该函数在 上是增函数;0,6 若函数 y=f(x)+a在 上的最小值为 ,则实数 a=2 .0,2其中正确判断的序号是 . 解析 将函数 y=sin 2x的图象向左平移 个单位长度得到 y=sin 2 x+ =sin6 6的图象 ,然后将所得图象上所有点的纵坐标伸长到原来的 2倍(横坐标不变)得到(2+3)y=2sin 的图象,故 不正确; y=f =2sin 2 + =2sin =0,故该函数图象关于(2+3) (3) 33点 对称 , 正确;由 - +2k2 x+ +2k, kZ,得 - +k x +k, kZ,即函(3,0) 2 3 213数 f(x)的单调递增区间为 ,kZ,当 k=0时,单调递增区间为 - , ,512+,12+故 不正确; y=f(x)+a=2sin +a,当 0 x 时, 2 x+ ,故当 2x+ = ,即 x=(2+3) 2 3 3 43 343时,该函数取得最小值, ymin=2sin +a=- +a= ,得 a=2 , 正确 .2 43答案


    注意事项

    本文(2019届高考数学二轮复习第一篇考点三三角函数与解三角形考查角度2三角函数图象与性质的应用突破训练文.doc)为本站会员(bowdiet140)主动上传,麦多课文档分享仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知麦多课文档分享(点击联系客服),我们立即给予删除!




    关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

    copyright@ 2008-2019 麦多课文库(www.mydoc123.com)网站版权所有
    备案/许可证编号:苏ICP备17064731号-1 

    收起
    展开