欢迎来到麦多课文档分享! | 帮助中心 海量文档,免费浏览,给你所需,享你所想!
麦多课文档分享
全部分类
  • 标准规范>
  • 教学课件>
  • 考试资料>
  • 办公文档>
  • 学术论文>
  • 行业资料>
  • 易语言源码>
  • ImageVerifierCode 换一换
    首页 麦多课文档分享 > 资源分类 > PDF文档下载
    分享到微信 分享到微博 分享到QQ空间

    REG NASA-LLIS-0802--2000 Lessons Learned Battery Verification Through Long-Term Simulation.pdf

    • 资源ID:1018448       资源大小:19.83KB        全文页数:5页
    • 资源格式: PDF        下载积分:10000积分
    快捷下载 游客一键下载
    账号登录下载
    微信登录下载
    二维码
    微信扫一扫登录
    下载资源需要10000积分(如需开发票,请勿充值!)
    邮箱/手机:
    温馨提示:
    如需开发票,请勿充值!快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如需开发票,请勿充值!如填写123,账号就是123,密码也是123。
    支付方式: 支付宝扫码支付    微信扫码支付   
    验证码:   换一换

    加入VIP,交流精品资源
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    REG NASA-LLIS-0802--2000 Lessons Learned Battery Verification Through Long-Term Simulation.pdf

    1、Best Practices Entry: Best Practice Info:a71 Committee Approval Date: 2000-04-17a71 Center Point of Contact: MSFCa71 Submitted by: Wil HarkinsSubject: Battery Verification Through Long-Term Simulation Practice: Conduct highly instrumented real-time long term tests and accelerated testing of space fl

    2、ight batteries using automated systems that simulate prelaunch, launch, mission, and post mission environments to verify suitability for the mission, to confirm the acceptability of design configurations, to resolve mission anomalies, and to improve reliability.Programs that Certify Usage: This prac

    3、tice has been used on Hubble Space Telescope (HST), Advanced x-ray Astrophysics Facility (AXAF), External Tank (ET), Solid Rocket Booster (SRB), Inertial Upper Stage (IUS), and Combined Release and Radiation Effects Satellite (CRRES).Center to Contact for Information: MSFCImplementation Method: This

    4、 Lesson Learned is based on Reliability Practice number PT-TE-1434 from NASA Technical Memorandum 4322A, NASA Reliability Preferred Practices for Design and Test.Benefit:Since the operational readiness and future performance of space flight batteries at any point in a mission are strongly dependent

    5、upon past power cycles and environments, thoroughly instrumented and analyzed ground testing of space flight batteries identical to flight configurations will ensure Provided by IHSNot for ResaleNo reproduction or networking permitted without license from IHS-,-,-predictable performance and high rel

    6、iability of flight batteries.Implementation Method:Real-time, long term mission, power cycle simulations of space flight batteries in ground facility test beds provide an excellent indication of expected performance in flight. Complete verification of a full real-time mission is not possible with lo

    7、ng-term missions due to the test lead time. Instead of accelerating the test, the test engineers should “lead“ the actual mission by a year or two (as long a lead-time as possible while still being able to use flight designs and configurations). This verification is in addition to qualification step

    8、s for the designs. Accelerated testing is not common for low earth orbit (LEO) missions but is used for non-LEO missions.The cells are interconnected in the anticipated flight condition and are housed in a thermally controlled chamber which is purged with an inert gas. Preprogramed, computer control

    9、led power supplies and load banks cycle the batteries through the same dormant, power drain, and charging cycles that they would encounter in the space operation. Shading of solar arrays during eclipse periods is simulated by absence of charging current, and charge cycles are simulated during exposu

    10、re to the sun. Table 1 lists the principal purposes and features of long-term battery simulations.refer to D descriptionD Table 1. Principal Purposes and Features of Long-Term Battery Simulation All cells are instrumented at various locations for current, voltage, temperature, and pressure. Ambient

    11、temperature in the chamber is constantly monitored. Voltage and current values are available in real time through digital readouts. Voltage, current, pressure, and temperature are recorded constantly on strip charts. Data are sampled by computer programs which compute and analyze ongoing performance

    12、. Table 2 shows the parameters usually recorded and/or computed for Provided by IHSNot for ResaleNo reproduction or networking permitted without license from IHS-,-,-each battery cell from sampled data. Ground testing of batteries and their associated power systems has proven to be a valuable asset

    13、for the resolution of in-flight anomalies. Limits testing can be safely simulated on the ground to verify or explore variations in flight performance.refer to D descriptionD Table 2. Recorded and Computed Data Parameters for Each Cell Safety precautions are important in testing of all battery system

    14、s because leakage of electrolytes or effluents can be hazardous. Typical precautions and safeguards for nickel-hydrogen (Ni-H2) batteries are shown in Table 3.refer to D descriptionD Table 3. Typical Precautions/Safeguards for Ni-H2Battery Testing Provided by IHSNot for ResaleNo reproduction or netw

    15、orking permitted without license from IHS-,-,-An important action that will help to ensure a successful test effort is the preparation of a comprehensive test plan before the test begins. The test plan should describe the overall scope and approach to the test operation, and provide a detailed test

    16、sequence including the test set up parameters, data handling requirements, and test procedures. The test setup description should include the cell specifications and method of packaging into the battery configuration, the data acquisition and control procedures, and the thermal control system requir

    17、ements. Test procedures should include cell characterization testing procedures (assuming that the cells have already passed through acceptance testing prior to receipt at the test site), launch scenario simulation procedures, mission simulation procedures, and mission capacity test and reconditioni

    18、ng procedures if required.Technical Rationale:MSFC has conducted multi-year testing of silver-zinc, nickel-cadmium, and nickel-hydrogen batteries since 1986. Some tests that were started in 1986 are still underway at this writing. Test durations are over eight years and counting. MSFC is conducting

    19、8 to 10 tests simultaneously, with up to 400 channels of instrumentation on some tests. To support the Hubble Space Telescope, diode bypass relays on two batteries were opened to simulate an in-flight anomaly. The HST ground tests indicated that strong performance should continue from the HST flight

    20、 batteries despite the in-flight anomaly.References:1. Whitt, Thomas and Lorna Jackson: “Battery and Cell Testing at Marshall Space Flight Center,“ (a presentation), NASA/MSFC, EB12, Huntsville, AL, 1988.2. Brewer, Jeffrey, John Pajak, and Lorna Jackson: “Test Plan for AXAF-I Ni-H2Battery Mission Si

    21、mulation Testing,“ NASA/MSFC, EB71, Huntsville, AL, March 30, 1994.3. Brewer, Jeffrey, and Thomas Whitt: “HST Ni-H2Flight Spare Battery Test,“ NASA/MSFC, EB12, Huntsville, AL, Huntsville, AL, October 6, 1989.4. Whitt, Thomas, and Charles Hall: “HST Ni-H2Six Battery Mission Simulation Test,“ NASA/MSF

    22、C, EB12, Huntsville, AL, November 2, 1989.5. Whitt, Thomas, and Jeffrey Brewer: “Fifth Semi-Annual Report on HST Ni-H2Six Battery and Flight Spare Battery Test,“ NASA/MSFC, Huntsville, AL, August 8, 1993.Impact of Non-Practice: Failure to perform long term mission simulations will result in inadequa

    23、te knowledge of long duration performance characteristics and could result in the retention of undesirable battery characteristics or failure modes that would result in mission failure.Provided by IHSNot for ResaleNo reproduction or networking permitted without license from IHS-,-,-Related Practices: N/AAdditional Info: Approval Info: a71 Approval Date: 2000-04-17a71 Approval Name: Eric Raynora71 Approval Organization: QSa71 Approval Phone Number: 202-358-4738Provided by IHSNot for ResaleNo reproduction or networking permitted without license from IHS-,-,-


    注意事项

    本文(REG NASA-LLIS-0802--2000 Lessons Learned Battery Verification Through Long-Term Simulation.pdf)为本站会员(Iclinic170)主动上传,麦多课文档分享仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知麦多课文档分享(点击联系客服),我们立即给予删除!




    关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

    copyright@ 2008-2019 麦多课文库(www.mydoc123.com)网站版权所有
    备案/许可证编号:苏ICP备17064731号-1 

    收起
    展开